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Gaussian process (GP) distribution
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Inverse operator: C~1; Functional determinant: |e|.
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Gaussian distributions are closed under linear maps: Every linear transformation of a Gaussian
is also Gaussian.

+ Every discretization (s); = s(x;), with x; € Q Vi € {1,..., N} is distributed according to a
multivariate Gaussian:
+ With mean m; = m(x;) and Covariance matrix C;; = C(x;, xj).

Multivariate Gaussian
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Matrix inverse: C~1; Determinant: |e|.

+ Given a set of linear measurements d of s, the resulting posterior P (s|d, m, C) is also
Gaussian — Linear filter theory.

+ Main computational challenges: Apply matrix inverse C~1, construct conditionals (Schur
complement), (for kernel estimation) evaluate determinant.

+ Non-linear measurements? How to estimate C?
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P(s,d|C) = P(d|s) N(s;0, C) .
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GP - Priors
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VLBI - M87* [AFH*22]
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GP - Priors
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Applications [HE20]
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GP - Priors

Ag, with Aoca FLWP, Py(k)xe™®
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GP - Priors

s=A¢ with A(%x) ocl/(10 2

Probability distribution P s(x,y)
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Dust tomography [LEK*22]




GP - Summary & Outlook [ELFE22]

Generative process — Integral equation

s(x*):/A@y) £() d7 .
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Generative process — Integral equation
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s(z)=/A(z,y> £} a7

+ Gaussian Prior # Gaussian Posterior

+ Prior model <+ Physical model

+ Solving inference problems given data: O (104 ~ 105) model evaluations.

+ Prior vs. Likelihood: “natural” grids (e.g. Stat. homogeneity — Euclidean grid vs. Gal.
Tomography — Radial grids)

+ Calibration of prior models using simulations:

+ Two-point correlation function of observables

+ Identifying most relevant higher moments

+ .

Numerical Information Field Theory (NIFTy)

N I FTY Code: https://gitlab.mpcdf.mpg.de/ift/nifty
BN s Docs: https://ift.pages.mpcdf.de/nifty
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https://gitlab.mpcdf.mpg.de/ift/nifty
https://ift.pages.mpcdf.de/nifty/index.html
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