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Gaussian processes

D Probability distributions P (s) over functions sx ≡ s(x), with s ∈ L2 [Ω] , x ∈ Ω ⊂ RN .

D Gaussian processes are fully specified by their one- and two-point correlation functions:

D Mean field: mx = m(x) ≡ ⟨sx⟩P(s).

D Correlation structure: Cxy = C (x , y) ≡
〈
(sx −mx) (sy −my )

∗〉
P(s)

.

Gaussian process (GP) distribution

P(s|m,C ) = N (s;m,C ) =
1√
|2πC |

exp

(
−1

2
(s −m)†C−1(s −m)

)
=

1√
|2πC |

exp

(
−1

2

∫ ∫
(s(x)−m(x)) C−1(x , y) (s(y)−m(y)) dxdy

)
Inverse operator: C−1; Functional determinant: |•|.
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Gaussian processes - Regression

Gaussian distributions are closed under linear maps: Every linear transformation of a Gaussian

is also Gaussian.

D Every discretization (s)i ≡ s(xi ), with xi ∈ Ω ∀i ∈ {1, ...,N} is distributed according to a

multivariate Gaussian:

D With mean mi = m(xi ) and Covariance matrix Cij = C (xi , xj).

Multivariate Gaussian

P(s|m,C ) = N (s;m,C) =
1√
|2πC|

exp

(
−1

2
(s−m)†C−1(s−m)

)
Matrix inverse: C−1; Determinant: |•|.

D Given a set of linear measurements d of s, the resulting posterior P (s|d,m,C ) is also

Gaussian → Linear filter theory.

D Main computational challenges: Apply matrix inverse C−1, construct conditionals (Schur

complement), (for kernel estimation) evaluate determinant.

D Non-linear measurements? How to estimate C?
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Generative (Gaussian) processes

D Given measurements d and a generic (non-Gaussian) Likelihood P(d |s),
D Together with a GP-prior P(s) = N (s; 0,C ).

D Let sx = (A ξ)x ≡
∫
A(x , y) ξ(y) dy with C = AA†

D Since P(s) ds
!
= P(ξ) dξ we get P(ξ) = N (ξ; 0,1).

Joint distribution

P(s, d |C ) = P(d |s) N (s; 0,C ) .

s = A ξ; A = A(ξA).

D Joint inference of A (thereby also C ): Let A = A(ξA) be a generative model of A, with

P(ξA; 0,1).
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GP - Priors

s = A ξ, with A
(
x⃗ , x⃗ ′

)
∝

∣∣∣x⃗ − x⃗ ′
∣∣∣−α

.
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GP - Priors

s = A ξ, with A ∝ F−1
√̂
Ps , Ps(k) ∝ eτ(k) .

5



Dust tomography [LGE20]
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VLBI - M87* [AFH+22]
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Applications [HE20]
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GP - Priors

s = A ξ, with A
(
x⃗ , x⃗ ′

)
∝ 1/

(
1+ 1

σ(a(⃗x)) |x⃗−x⃗′|2
)2

.
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Dust tomography [LEK+22]

13



GP - Summary & Outlook [ELFE22]

Generative process → Integral equation

s (x⃗) =

∫
A (x⃗ , y⃗) ξ (y⃗) dy⃗ .
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GP - Summary & Outlook [ELFE22]

Generative process → Integral equation

s (x⃗) =

∫
A (x⃗ , y⃗) ξ (y⃗) dy⃗ =

∫
A
(
x⃗
(
ϕ⃗
)
− y⃗

(
ϕ⃗′
))

ξ
(
y⃗
(
ϕ⃗′
))

dϕ⃗′ .

14



GP - Conclusions

s (x⃗) =

∫
A (x⃗ , y⃗) ξ (y⃗)dy⃗ .

D Gaussian Prior ̸= Gaussian Posterior

D Prior model ↔ Physical model

D Solving inference problems given data: O
(
104 ∼ 105

)
model evaluations.

D Prior vs. Likelihood: “natural” grids (e.g. Stat. homogeneity → Euclidean grid vs. Gal.

Tomography → Radial grids)

D Calibration of prior models using simulations:

D Two-point correlation function of observables

D Identifying most relevant higher moments

D ...

Numerical Information Field Theory (NIFTy)

Code: https://gitlab.mpcdf.mpg.de/ift/nifty

Docs: https://ift.pages.mpcdf.de/nifty
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