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Why?



Dust tomography [LGE20]
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Why? - Signal based estimators

Given observational data d → Obtain answers a to questions q /

obtain estimators â = gq (d ,M) under model assumptions M.

For example, given GAIA extinction data ...

D ... spatial power-spectrum of dust?

D ... distance between Perseus/Taurus regions?

Given signal s ≡ complete description of the system: (ρdust,Tdust,...)

answers are obtained via

Signal based answers

a = q (s) .

With: s = signal, q = question.

Figure 2: [LGE20]
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Why? - Probabilistic reasoning

Signal based answers

a =

⟨

q (s)

⟩ ≡
∫

q (s) P (s|d ,M) ds = gq (d ,M) .

With: s = signal, q = question,

P (s|d ,M) = posterior distribution, M = Model.
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∫
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Why? - Probabilistic reasoning & Forward modeling

Signal based estimators

â = ⟨q (s)⟩P(s|d,M) ≡
∫

q (s) P (s|d ,M) ds = gq (d ,M) .

With: s = signal, q = question, P (s|d ,M) = posterior distribution, M = Model.

Product rule aka Bayes’ Theorem

P (s|d ,M) =
P (s, d |M)∫
P (s, d |M) ds

.

P (s, d |M) = P (d |s,M)︸ ︷︷ ︸
Likelihood

P (s|M)︸ ︷︷ ︸
Prior

.
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How?

Product rule aka Bayes’ Theorem

P (s|d ,M) =
P (s, d |M)∫
P (s, d |M) ds

.

P (s, d |M) = P (d |s,M)︸ ︷︷ ︸
Likelihood

P (s|M)︸ ︷︷ ︸
Prior

.

Likelihood ↔ Instrument model

D Signal → Observable

D Instrument geometry

D Exposure

D Point-spread function

D Noise processes

D ...
[PAAe21]
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How? - Gaussian & generative processes

D Probability distributions P (s|M) over functions sx ≡ s(x), with s ∈ L2 [Ω] , x ∈ Ω ⊂ RN .

D Gaussian processes are fully specified by their one- and two-point correlation functions:

D Mean field: mx = m(x) ≡ ⟨sx⟩P(s).

D Correlation structure: Cxy = C (x , y) ≡
〈
(sx −mx) (sy −my )

∗〉
P(s)

.

Gaussian process (GP) distribution

P(s|m,C ) = N (s;m,C ) =
1√
|2πC |

exp

(
−1

2
(s −m)†C−1(s −m)

)
=

1√
|2πC |

exp

(
−1

2

∫ ∫
(s(x)−m(x)) C−1(x , y) (s(y)−m(y)) dxdy

)
Inverse operator: C−1; Functional determinant: |•|.
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How? - Gaussian & generative processes

Fields, with Cxy ∝ |x⃗ − y⃗ |−α
.
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How? - VLBI of M87* [AFH+22]
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How? - Gaussian & generative processes

Fields, with Cxy ∝ a (x⃗)CPs (|x⃗ − y⃗ |) a (y⃗) .
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How? - Gaussian & generative processes

Fields, with Cxy ∝ Ca (x⃗ , y⃗) .
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How? - Gaussian & generative processes
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How? - Gaussian & generative processes
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How? - Approximate inference

Signal based estimators

â = ⟨q (s)⟩P(s|d,M) ≡
∫

q (s) P (s|d ,M) ds

≊
∫

q (s = f (ξ)) Q (ξ|d ,M) dξ

.

With: s = signal, q = question, P (s|d ,M) = posterior distribution.

Kullback-Leibler divergence

KL [Qσ||P] = −
∫

log

(
P(ξ|d)
Qσ(ξ)

)
Qσ(ξ) dξ

Posterior: P(ξ|d ,M); Approximation: Q(ξ|d ,M); Variational parameters: σ.
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â = ⟨q (s)⟩P(s|d,M) ≡
∫

q (s) P (s|d ,M) ds ≊
∫

q (s) Q (s|d ,M) ds

≊
∫

q (s = f (ξ)) Q (ξ|d ,M) dξ

.

With: s = signal, q = question, P (s|d ,M) = posterior distribution.

Kullback-Leibler divergence

KL [Qσ||P] = −
∫

log

(
P(ξ|d)
Qσ(ξ)

)
Qσ(ξ) dξ

Posterior: P(ξ|d ,M); Approximation: Q(ξ|d ,M); Variational parameters: σ.

17



How? - Approximate inference

Signal based estimators
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How? - Geometric Variational Inference (geoVI) [FLE21]
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How? - Geometric Variational Inference (geoVI) [FLE21]
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What?



Radio interferometry - VLBI imaging [AFH+22]
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Radio interferometry - VLBI imaging [AFH+22]
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Ring fitting (see [?, Table 7])

d (µas) w (µas) η (◦) A fC

eht-imaging [?]

April 5 39.3± 1.6 16.2± 2.0 148.3± 4.8 0.25± 0.02 0.08

April 6 39.6± 1.8 16.2± 1.7 151.1± 8.6 0.25± 0.02 0.06

April 10 40.7± 1.6 15.7± 2.0 171.2± 6.9 0.23± 0.03 0.04

April 11 41.0± 1.4 15.5± 1.8 168.0± 6.9 0.20± 0.02 0.04

Our method

Uncertainty as per [?, Table 7])

April 5 44.4± 3.4 23.2± 5.2 164.9± 9.5 0.26± 0.04 0.365

April 6 44.4± 2.9 23.3± 5.4 161.7± 5.6 0.24± 0.04 0.374

April 10 44.8± 2.8 23.0± 5.0 176.7± 9.8 0.22± 0.03 0.374

April 11 44.6± 2.8 22.8± 4.8 180.1± 10.4 0.22± 0.03 0.372

Sample uncertainty

April 5 44.1± 1.2 23.1± 2.4 163.9± 5.0 0.25± 0.03 0.377± 0.081

April 6 44.0± 1.2 22.9± 2.4 161.9± 6.0 0.24± 0.03 0.385± 0.085

April 10 44.6± 1.2 22.9± 2.5 176.2± 6.5 0.22± 0.03 0.383± 0.089

April 11 44.6± 1.2 23.0± 2.6 179.8± 6.2 0.22± 0.03 0.383± 0.090
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Faraday sky & LOS magnetic field [HHF+23]
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Faraday sky & LOS magnetic field [HHF+23]
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Faraday sky & LOS magnetic field [HHF+23]
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Faraday sky & LOS magnetic field [HHF+23]
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Faraday sky & LOS magnetic field [HHF+23]
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GAIA 3D dust tomography [EZF+23]
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GAIA 3D dust tomography [EZF+23]
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GAIA 3D dust tomography [EZF+23]
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Chandra X-ray imaging [WEG+23]
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Chandra X-ray imaging [WEG+23]
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Chandra X-ray imaging [WEG+23]
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Chandra X-ray imaging [WEG+23]
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Chandra X-ray imaging [WEG+23]
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Fermi γ-ray sky
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Fermi γ-ray sky
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Fermi γ-ray sky
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Fermi γ-ray sky
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Fermi γ-ray sky
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Fermi γ-ray sky
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Conclusion

Estimated answers â of questions q can ...

D ... depend on data and assumptions: â = g (d ,M).

D ... result from a signal and its posterior: â = ⟨f (s)⟩P(s|d,M)

D ... or a signal and its Prior and Likelihood: P (s|d ,M) ∝ P (d |s,M) P (s|M)

For Fields: Gaussian processes + Geometric Variational Inference can provide a powerful

solution tool

Numerical Information Field Theory (NIFTy)

Code: https://gitlab.mpcdf.mpg.de/ift/nifty

Docs: https://ift.pages.mpcdf.de/nifty

42
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