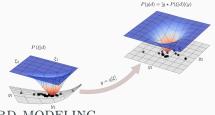
Signal reconstruction for fields



USING PROBABILISTIC REASONING & FORWARD MODELING

Philipp Frank¹ IA-FORTH seminar: Institute of Astrophysics - FORTH, University of Crete, Greece, September 13, 2023 Mail: philipp@mpa-garching.mpg.de, Web: www.ph-frank.de

(1) Max-Planck Institute for Astrophysics MPA, Garching, Germany

Signal reconstruction for fields - Overview

- + Why?
 - + Signal based estimators
 - + Probabilistic reasoning
 - + Forward modeling

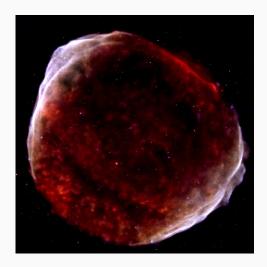


Figure 1: SN1006 from Chandra data [WEG⁺23]

Signal reconstruction for fields - Overview

- + Why?
 - + Signal based estimators
 - + Probabilistic reasoning
 - + Forward modeling
- + How?
 - + Generative models
 - + Gaussian processes
 - + Likelihood & Instrument models
 - + Approximate inference

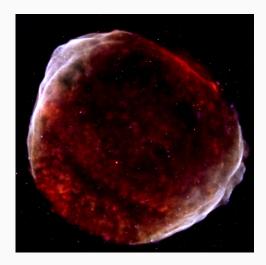


Figure 1: SN1006 from Chandra data [WEG⁺23]

Signal reconstruction for fields - Overview

- + Why?
 - + Signal based estimators
 - + Probabilistic reasoning
 - + Forward modeling
- + How?
 - + Generative models
 - + Gaussian processes
 - + Likelihood & Instrument models
 - + Approximate inference
- + What?
 - + Radio interferometry VLBI imaging
 - + Faraday sky & LOS magnetic field
 - + GAIA 3D dust tomography
 - + Chandra/Erosita X-ray imaging
 - + Fermi γ -ray sky
 - + ...

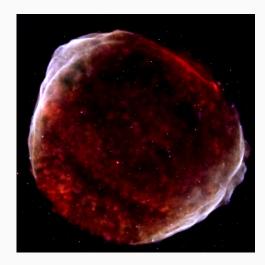
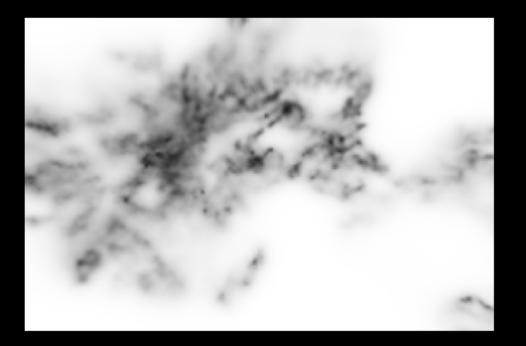
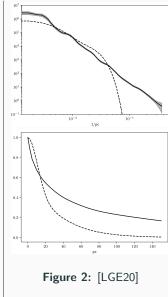


Figure 1: SN1006 from Chandra data [WEG⁺23]

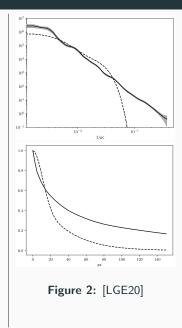
Why?





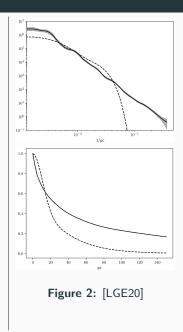


Given observational data $d \rightarrow$ Obtain answers *a* to questions q / obtain estimators $\hat{a} = g_q(d, M)$ under model assumptions *M*.



Given observational data $d \rightarrow$ Obtain answers *a* to questions q / obtain estimators $\hat{a} = g_q(d, M)$ under model assumptions *M*. For example, given GAIA extinction data ...

+ ... spatial power-spectrum of dust?



Given observational data $d \to Obtain$ answers a to questions q / obtain estimators $\hat{a} = g_q(d, M)$ under model assumptions M. For example, given GAIA extinction data ...

- + ... spatial power-spectrum of dust?
- + ... distance between Perseus/Taurus regions?

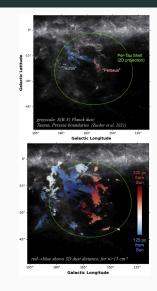


Figure 2: [BZG⁺21]

Given observational data $d \to Obtain$ answers a to questions q / obtain estimators $\hat{a} = g_q(d, M)$ under model assumptions M. For example, given GAIA extinction data ...

- + ... spatial power-spectrum of dust?
- + ... distance between Perseus/Taurus regions?

Given signal $s \equiv$ complete description of the system: ($\rho_{dust,T_{dust},...}$)



Figure 2: [BZG⁺21]

Given observational data $d \to Obtain$ answers a to questions q / obtain estimators $\hat{a} = g_q(d, M)$ under model assumptions M. For example, given GAIA extinction data ...

- + ... spatial power-spectrum of dust?
- + ... distance between Perseus/Taurus regions?

Given signal $s \equiv$ complete description of the system: ($\rho_{dust,T_{dust},...}$) answers are obtained via

Signal based answers

$$a = q(s)$$

With: s = signal, q = question.

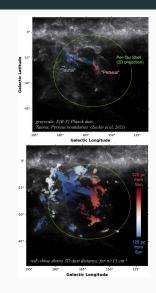


Figure 2: [BZG⁺21]

Signal based answers

$$a = q(s)$$

With: s = signal, q = question,

Signal based estimators

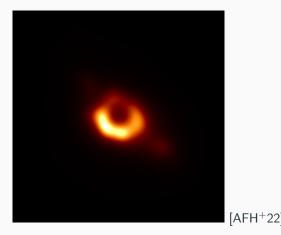
$$\hat{a} = \langle q(s) \rangle_{\mathcal{P}(s|d,M)} \equiv \int q(s) \mathcal{P}(s|d,M) \, \mathrm{d}s$$

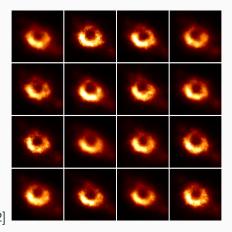
Signal based estimators

$$\hat{a} = \langle q\left(s
ight) \rangle_{\mathcal{P}\left(s|d,M
ight)} \equiv \int q\left(s
ight) \mathcal{P}\left(s|d,M
ight) \, \mathrm{d}s = g_{q}\left(d,M
ight) \; .$$

Signal based estimators

$$\hat{a} = \langle q(s) \rangle_{\mathcal{P}(s|d,M)} \equiv \int q(s) \mathcal{P}(s|d,M) \, \mathrm{d}s = g_q(d,M) \; .$$





$$\hat{a} = \langle q(s) \rangle_{\mathcal{P}(s|d,M)} \equiv \int q(s) \mathcal{P}(s|d,M) \, \mathrm{d}s = g_q(d,M)$$
.

$$\hat{a} = \langle q(s) \rangle_{\mathcal{P}(s|d,M)} \equiv \int q(s) \mathcal{P}(s|d,M) \, \mathrm{d}s = g_q(d,M)$$
.

With: s = signal, q = question, $\mathcal{P}(s|d, M) = \text{posterior distribution}$, M = Model.

Product rule aka Bayes' Theorem

$$\mathcal{P}(s|d,M) = \frac{\mathcal{P}(s,d|M)}{\int \mathcal{P}(s,d|M) \, \mathrm{d}s}$$

$$\hat{a} = \langle q(s) \rangle_{\mathcal{P}(s|d,M)} \equiv \int q(s) \mathcal{P}(s|d,M) \, \mathrm{d}s = g_q(d,M)$$
.

With: s = signal, q = question, $\mathcal{P}(s|d, M) = \text{posterior distribution}$, M = Model.

Product rule aka Bayes' Theorem

$$\mathcal{P}(s|d, M) = \frac{\mathcal{P}(s, d|M)}{\int \mathcal{P}(s, d|M) \, \mathrm{d}s}$$

$$\mathcal{P}(s, d|M) = \underbrace{\mathcal{P}(d|s, M)}_{\text{Likelihood}} \underbrace{\mathcal{P}(s|M)}_{\text{Prior}}$$

How?

How?

Product rule aka Bayes' Theorem

$$\mathcal{P}(s|d, M) = \frac{\mathcal{P}(s, d|M)}{\int \mathcal{P}(s, d|M) \, \mathrm{d}s} \, .$$
$$\mathcal{P}(s, d|M) = \underbrace{\mathcal{P}(d|s, M)}_{\mathsf{Likelihood}} \underbrace{\mathcal{P}(s|M)}_{\mathsf{Prior}} \, .$$

How?

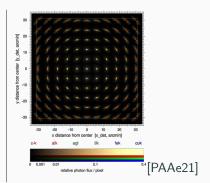
Product rule aka Bayes' Theorem

$$\mathcal{P}(s|d, M) = \frac{\mathcal{P}(s, d|M)}{\int \mathcal{P}(s, d|M) \, \mathrm{d}s} \, .$$
$$\mathcal{P}(s, d|M) = \underbrace{\mathcal{P}(d|s, M)}_{\mathsf{Likelihood}} \underbrace{\mathcal{P}(s|M)}_{\mathsf{Prior}} \, .$$

 $\mathsf{Likelihood} \leftrightarrow \mathsf{Instrument} \mathsf{ model}$

- + Signal \rightarrow Observable
- + Instrument geometry
- + Exposure
- + Point-spread function
- + Noise processes

+ ...



+ Probability distributions $\mathcal{P}(s|M)$ over functions $s_x \equiv s(x)$, with $s \in \mathcal{L}^2[\Omega]$, $x \in \Omega \subset \mathbb{R}^N$.

- + Probability distributions $\mathcal{P}(s|M)$ over functions $s_x \equiv s(x)$, with $s \in \mathcal{L}^2[\Omega]$, $x \in \Omega \subset \mathbb{R}^N$.
- + Gaussian processes are fully specified by their one- and two-point correlation functions:
- + Mean field: $m_x = m(x) \equiv \langle s_x \rangle_{\mathcal{P}(s)}$.
- + Correlation structure: $C_{xy} = C(x, y) \equiv \langle (s_x m_x) (s_y m_y)^* \rangle_{\mathcal{P}(s)}$.

- + Probability distributions $\mathcal{P}(s|M)$ over functions $s_x \equiv s(x)$, with $s \in \mathcal{L}^2[\Omega]$, $x \in \Omega \subset \mathbb{R}^N$.
- + Gaussian processes are fully specified by their one- and two-point correlation functions:

+ Mean field:
$$m_x = m(x) \equiv \langle s_x \rangle_{\mathcal{P}(s)}$$

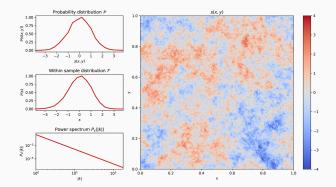
+ Correlation structure: $C_{xy} = C(x, y) \equiv \langle (s_x - m_x) (s_y - m_y)^* \rangle_{\mathcal{P}(s)}$.

Gaussian process (GP) distribution

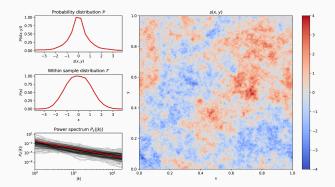
$$\begin{aligned} \mathcal{P}(s|m,C) &= \mathcal{N}\left(s;m,C\right) = \frac{1}{\sqrt{|2\pi C|}} \exp\left(-\frac{1}{2}(s-m)^{\dagger}C^{-1}(s-m)\right) \\ &= \frac{1}{\sqrt{|2\pi C|}} \exp\left(-\frac{1}{2}\int\int (s(x)-m(x)) \ C^{-1}(x,y) \ (s(y)-m(y)) \ \mathrm{d}x\mathrm{d}y\right) \end{aligned}$$

Inverse operator: C^{-1} ; Functional determinant: $|\bullet|$.

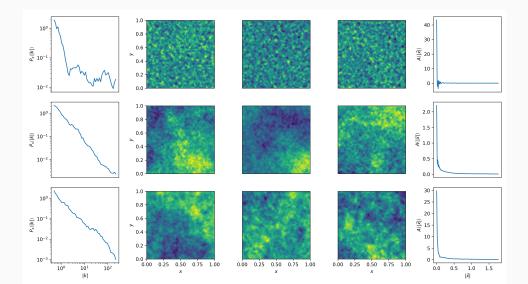
Fields, with $C_{xy} \propto |\vec{x} - \vec{y}|^{-\alpha}$.



 ${
m Field} s, \hspace{0.2cm} {
m with} \hspace{0.2cm} {
m {\it C}}_{xy} \propto {
m {\it C}}_{{
m {\it P}}_s} \left(|ec{x}-ec{y}|
ight) \; .$

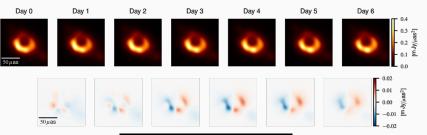


 ${
m Field} s, ~~{
m with}~~ {\it C}_{{\it xy}} \propto {\it C}_{{\it P}_{s}}\left(|ec{x}-ec{y}|
ight)~.$

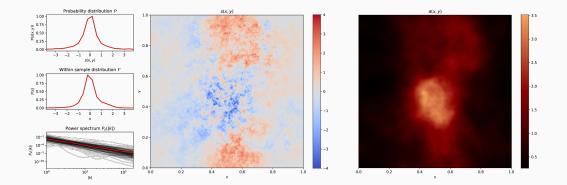


11

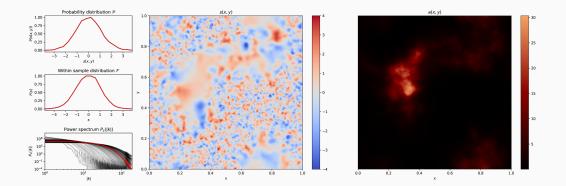
How? - VLBI of M87* [AFH+22]

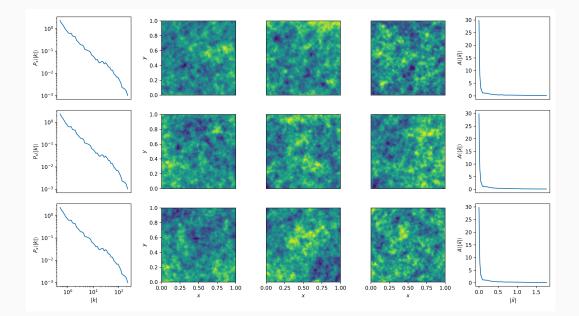


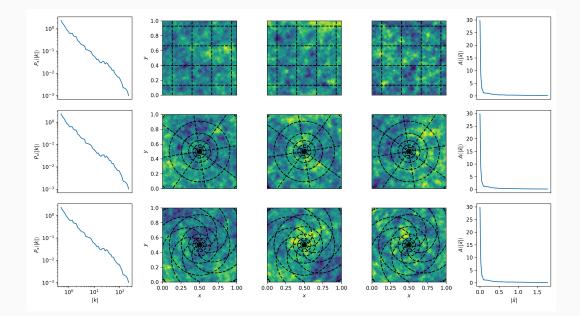
Fields, with $C_{xy} \propto a(\vec{x}) C_{P_s}(|\vec{x} - \vec{y}|) a(\vec{y})$.



Fields, with $C_{xy} \propto C_a(\vec{x}, \vec{y})$.







$$\hat{a} = \langle q(s) \rangle_{\mathcal{P}(s|d,M)} \equiv \int q(s) \mathcal{P}(s|d,M) \, \mathrm{d}s$$

$$\hat{a} = \langle q(s) \rangle_{\mathcal{P}(s|d,M)} \equiv \int q(s) \mathcal{P}(s|d,M) \, \mathrm{d}s \cong \int q(s) \mathcal{Q}(s|d,M) \, \mathrm{d}s$$

$$\hat{a} = \langle q(s) \rangle_{\mathcal{P}(s|d,M)} \equiv \int q(s) \mathcal{P}(s|d,M) \, \mathrm{d}s \cong \int q(s = f(\xi)) \mathcal{Q}(\xi|d,M) \, \mathrm{d}\xi$$

Signal based estimators

$$\hat{a} = \langle q(s) \rangle_{\mathcal{P}(s|d,M)} \equiv \int q(s) \mathcal{P}(s|d,M) \, \mathrm{d}s \simeq \int q(s = f(\xi)) \mathcal{Q}(\xi|d,M) \, \mathrm{d}\xi$$

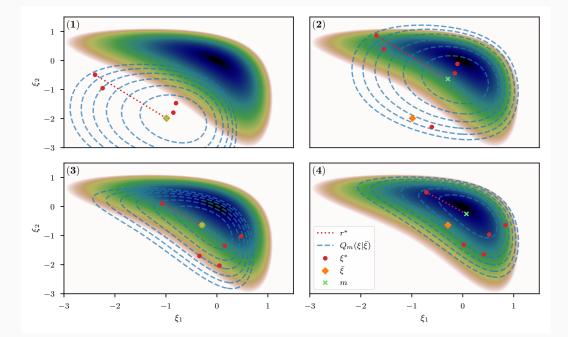
With: s = signal, q = question, $\mathcal{P}(s|d, M) = \text{posterior distribution}$.

Kullback-Leibler divergence

$$\operatorname{KL}\left[\mathcal{Q}_{\boldsymbol{\sigma}} || \mathcal{P}\right] = -\int \log \left(\frac{\mathcal{P}(\xi|d)}{\mathcal{Q}_{\boldsymbol{\sigma}}(\xi)}\right) \ \mathcal{Q}_{\boldsymbol{\sigma}}(\xi) \ \mathrm{d}\xi$$

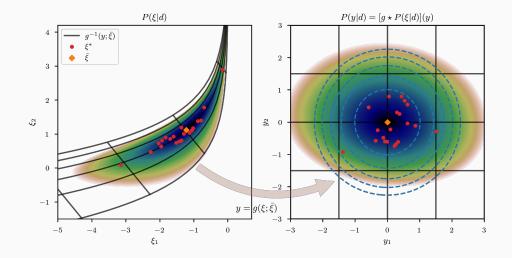
Posterior: $\mathcal{P}(\xi|d, M)$; Approximation: $\mathcal{Q}(\xi|d, M)$; Variational parameters: σ .

How? - Geometric Variational Inference (geoVI) [FLE21]



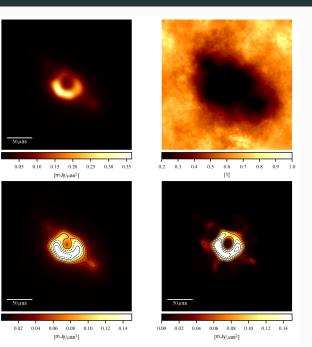
18

How? - Geometric Variational Inference (geoVI) [FLE21]

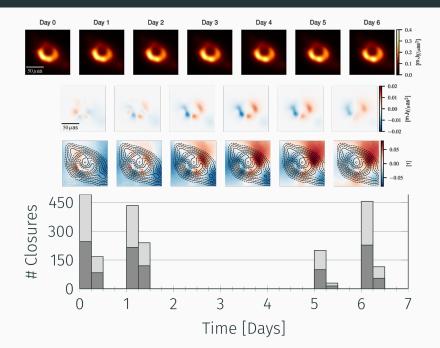


What?

Radio interferometry - VLBI imaging [AFH⁺22]

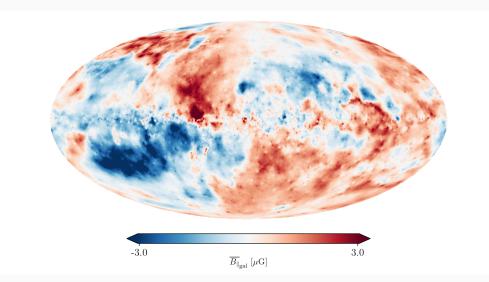


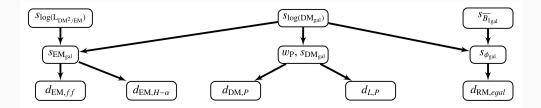
Radio interferometry - VLBI imaging [AFH⁺22]

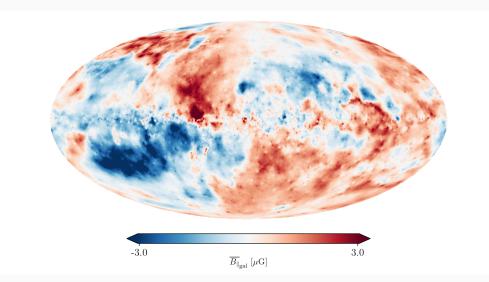


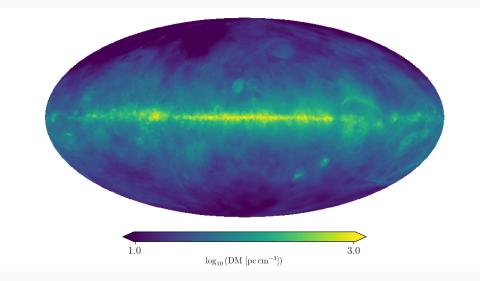
Ring fitting (see [?, Table 7])

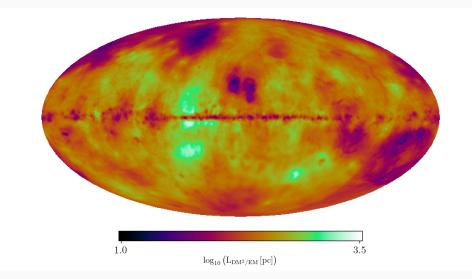
	d (μas)	w (μas)	η (°)	А	f _C
EHT-IMAGING [?]					
April 5	39.3 ± 1.6	16.2 ± 2.0	148.3 ± 4.8	$\textbf{0.25} \pm \textbf{0.02}$	0.08
April 6	39.6 ± 1.8	16.2 ± 1.7	151.1 ± 8.6	0.25 ± 0.02	0.06
April 10	40.7 ± 1.6	15.7 ± 2.0	171.2 ± 6.9	$\textbf{0.23}\pm\textbf{0.03}$	0.04
April 11	41.0 ± 1.4	15.5 ± 1.8	168.0 ± 6.9	$\textbf{0.20}\pm\textbf{0.02}$	0.04
Our method					
Uncertainty as per [?, Table 7])					
April 5	44.4 ± 3.4	23.2 ± 5.2	164.9 ± 9.5	$\textbf{0.26} \pm \textbf{0.04}$	0.365
April 6	44.4 ± 2.9	23.3 ± 5.4	161.7 ± 5.6	$\textbf{0.24} \pm \textbf{0.04}$	0.374
April 10	44.8 ± 2.8	23.0 ± 5.0	176.7 ± 9.8	0.22 ± 0.03	0.374
April 11	44.6 ± 2.8	22.8 ± 4.8	180.1 ± 10.4	$\textbf{0.22}\pm\textbf{0.03}$	0.372
SAMPLE UNCERTAINTY					
April 5	44.1 ± 1.2	23.1 ± 2.4	163.9 ± 5.0	$\textbf{0.25}\pm\textbf{0.03}$	0.377 ± 0.081
April 6	44.0 ± 1.2	22.9 ± 2.4	161.9 ± 6.0	$\textbf{0.24} \pm \textbf{0.03}$	0.385 ± 0.085
April 10	44.6 ± 1.2	22.9 ± 2.5	176.2 ± 6.5	$\textbf{0.22}\pm\textbf{0.03}$	$\textbf{0.383} \pm \textbf{0.089}$
April 11	44.6 ± 1.2	23.0 ± 2.6	179.8 ± 6.2	$\textbf{0.22}\pm\textbf{0.03}$	$\textbf{0.383} \pm \textbf{0.090}$



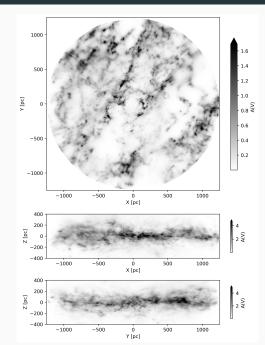






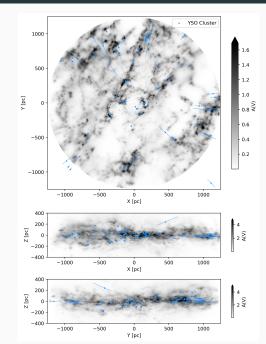


GAIA 3D dust tomography [EZF⁺23]

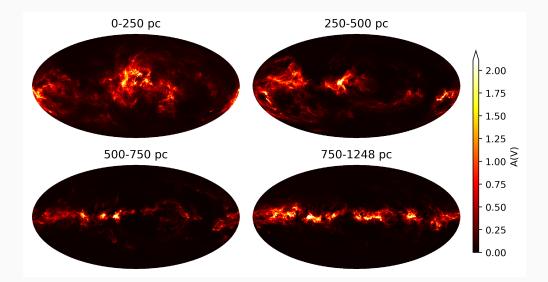


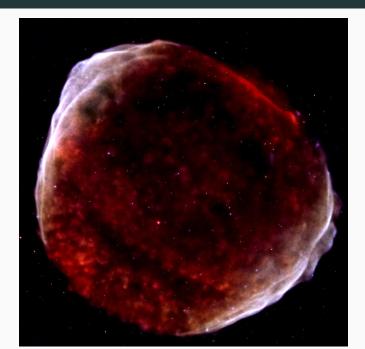
28

GAIA 3D dust tomography [EZF⁺23]

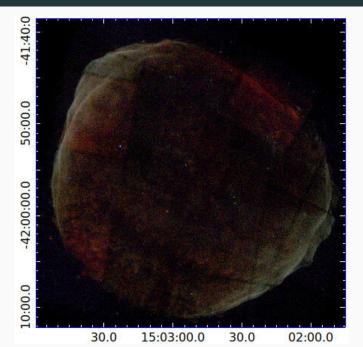


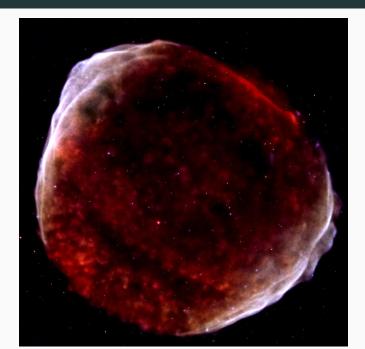
GAIA 3D dust tomography [EZF⁺23]



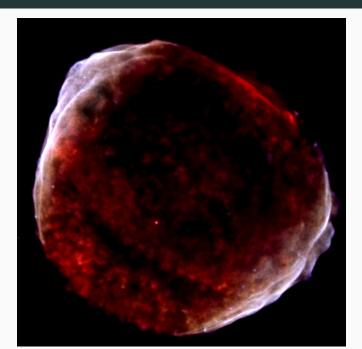


31

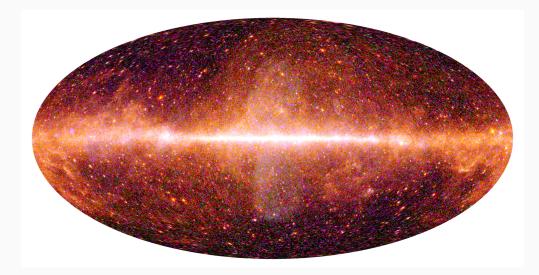


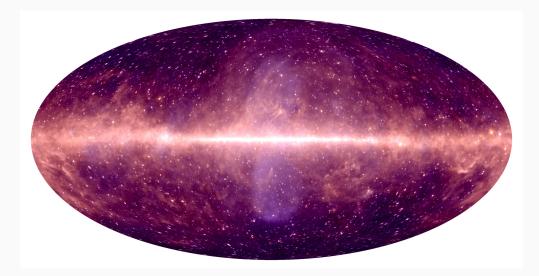


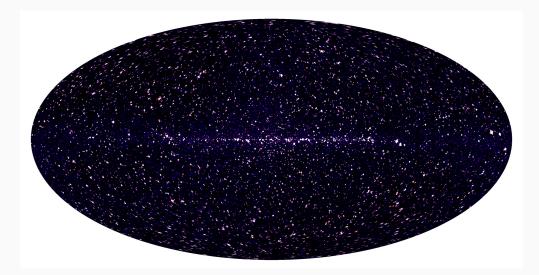
33

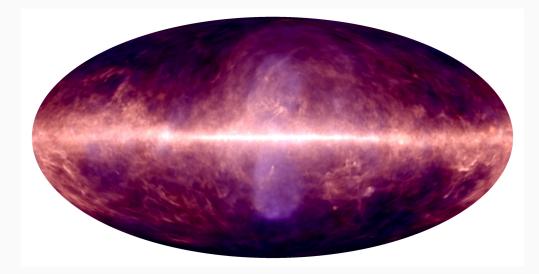


35

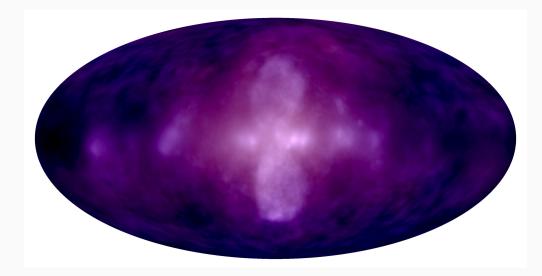












+ ... depend on data and assumptions: $\hat{a} = g(d, M)$.

- + ... depend on data and assumptions: $\hat{a} = g(d, M)$.
- + ... result from a signal and its posterior: $\hat{a} = \langle f(s) \rangle_{\mathcal{P}(s|d,M)}$

- + ... depend on data and assumptions: $\hat{a} = g(d, M)$.
- + ... result from a signal and its posterior: $\hat{a} = \langle f(s) \rangle_{\mathcal{P}(s|d,M)}$
- + ... or a signal and its Prior and Likelihood: $\mathcal{P}(s|d, M) \propto \mathcal{P}(d|s, M) \mathcal{P}(s|M)$

- + ... depend on data and assumptions: $\hat{a} = g(d, M)$.
- + ... result from a signal and its posterior: $\hat{a} = \langle f(s) \rangle_{\mathcal{P}(s|d,M)}$
- + ... or a signal and its Prior and Likelihood: $\mathcal{P}(s|d, M) \propto \mathcal{P}(d|s, M) \mathcal{P}(s|M)$

For Fields: Gaussian processes + Geometric Variational Inference can provide a powerful solution tool

- + ... depend on data and assumptions: $\hat{a} = g(d, M)$.
- + ... result from a signal and its posterior: $\hat{a} = \langle f(s) \rangle_{\mathcal{P}(s|d,M)}$
- + ... or a signal and its Prior and Likelihood: $\mathcal{P}\left(s|d,M\right)\propto\mathcal{P}\left(d|s,M\right)$ $\mathcal{P}\left(s|M\right)$

For Fields: Gaussian processes + Geometric Variational Inference can provide a powerful solution tool

Numerical Information	Field Theory (NIFTy)
NIFTY	Code: https://gitlab.mpcdf.mpg.de/ift/nifty Docs: https://ift.pages.mpcdf.de/nifty

References i

Philipp Arras, Philipp Frank, Philipp Haim, Jakob Knollmüller, Reimar Leike, Martin Reinecke, and Torsten A. Enßlin.
 Variable structures in m87* from space, time and frequency resolved interferometry.

Nature Astronomy, 6(2):259–269, 2022.

 Shmuel Bialy, Catherine Zucker, Alyssa Goodman, Michael M. Foley, João Alves, Vadim A. Semenov, Robert Benjamin, Reimar Leike, and Torsten Enßlin.
 The Per-Tau Shell: A Giant Star-forming Spherical Shell Revealed by 3D Dust Observations.

The Astrophysical Journal Letters, 919(1):L5, September 2021.

Gordian Edenhofer, Catherine Zucker, Philipp Frank, Andrew K. Saydjari, Joshua S. Speagle, Douglas Finkbeiner, and Torsten Enßlin.

A Parsec-Scale Galactic 3D Dust Map out to 1.25 kpc from the Sun. *arXiv e-prints*, page arXiv:2308.01295, August 2023.

References ii

- Philipp Frank, Reimar Leike, and Torsten A. Enßlin.
 Geometric variational inference.
 Entropy, 23(7), 2021.
- Sebastian Hutschenreuter, Marijke Haverkorn, Philipp Frank, Nergis C. Raycheva, and Torsten A. Enßlin.

Disentangling the Faraday rotation sky.

arXiv e-prints, page arXiv:2304.12350, April 2023.

Leike, Reimar H., Glatze, Martin, and Enßlin, Torsten A. **Resolving nearby dust clouds.**

A&A, 639:A138, 2020.

Predehl, P., Andritschke, R., Arefiev, V., and et al.
 The erosita x-ray telescope on srg.
 A&A, 647:A1, 2021.

 Margret Westerkamp, Vincent Eberle, Matteo Guardiani, Philipp Frank, Lukas Platz, Philipp Arras, Jakob Knollmüller, Julia Stadler, and Torsten Enßlin.
 First spatio-spectral Bayesian imaging of SN1006 in X-ray. arXiv e-prints, page arXiv:2308.09176, August 2023.