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Probabilistic generative model



VAE - Generative model (Decoder)

+ Latent features from common distribution
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VAE - Generative model (Decoder)

Latent features from common distribution
P(z) = N(z]0,1)

Generative model d = f(2)

Probabilistic model d = d+n; n ~ P(n)
E.g. P(n) =N (n|0,N)

+ Adaptive covariance N ~ P(N)
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VAE - Inference

+ Likelihood P (d,‘e, z;, ) = N(d,|f9 (Z,'), )
+ Prior P (0,z;, N) = P(0) N (z]0,1) P(N)
+ Dataset D = {di};c(y,  my: Latent variables Z = {z},.(,
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Product Rule of Probabilities aka
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Inference Network (Encoder)

+ Parameterize as a normal distribution

Qy(zi|di) = N (zi|pi, Xi)

+ And inference network ;i = ey (d;)

i

— N (zilpi, Zi)

+ Y often parameterized as a diagonal

matrix
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- Use full covariance matrix
- Estimate covariance from generative model using Fisher Information metric



Fisher metric as covariance

Fisher Information metric
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Fisher metric as covariance

Fisher Information metric

lropNt . fof
M(p) = [(82) N (62
+ Kramer-Rao bound

M) < ((z = p)(z - N)T>7>(z\d)

Fisher-Metric is an approximation to post.
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covariance (including off-diagonal)

+

Coupled second moments of P and Q

+

Increased inference capabilities of Q

+ Sampling is less trivial




Comparison - Fashion MNIST

FisherNet latent space VAE latent space
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VAE - Extensions

+ Exchange / Modify likelihood distribution
- Noise covariance N becomes a variable
+ Change approximation distribution Q
- Non-Gaussian approximation
- Use full covariance matrix
- Estimate covariance from generative model using Fisher Information metric

+ Post-process encoded distribution Q in latent space

- Transform latent space distribution to a standard normal distribution for sample generation
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Transform latent space

+ Marginal approximate prior distribution Q(z) = [ Q(z|d) P(d) dd
+ Ideally Q(z) ~ P(z) = N(z[0,1)

Transform using e.g. >
Normalizing flows or
density estimation

Use inverse trans-
formation for sample -2

generation -

-4 -3 -2 -1 0 1 2 3 4
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Decomposition of the Galactic
multi-frequency sky



Planck Map (545 GHz)




H-alpha (656.3 nm)




Fermi ~-ray map (1.7 GeV)




Decomposition of the Galactic multi-frequency sky - Data
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Decomposition of the Galactic multi-frequency sky - Data

+

Pixel based approach (d;: frequency brightness
vector at ith-location on the sky)

+

k = 35 all-sky maps

+

Frequencies from Radio (MHz) to gamma ray (GeV)

+

10 dimensional latent space
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Decomposition of the Galactic multi-frequency sky - Feature A
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Decomposition of the Galactic multi-frequency sky - Hadronic Component
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Decomposition of the Galactic multi-freq sky - Correlations

Correlation Dust Correlation Hadronic Component
10 4 24
+ 10? = 10?
3} 2
5 84 g 01
z % E 221 £
S 1000 : 100 S
= 4 2 4
B 2 = 61
0 T T T T 10 =) — T T 10°
-2 0 2 4 -2 0 2 4
Feature A Feature A
Mutual Information: /(X;Y)=1.72 Mutual Information: /(X;Y) = 1.07

20



Decomposition of the Galactic multi-frequency sky - Feature B




Decomposition of the Galactic multi-frequency sky - Correlations

Correlation Feature A Correlation Feature C
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Decomposition of the Galactic multi-frequency sky - Feature C




Decomposition of the Galactic multi-frequency sky - CMB
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Decomposition of the Galactic multi-freq sky - Correlations

Correlation CMB
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Summary

+

VAEs use probabilistic generative models

+

Associated inverse problem solved using variational inference

+

Fisher information metric as covariance can improve inference capacity

+ Posterior analysis of latent space using normalizing transformations can improve sampling
quality
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+

VAEs use probabilistic generative models

+

Associated inverse problem solved using variational inference

+

Fisher information metric as covariance can improve inference capacity

+ Posterior analysis of latent space using normalizing transformations can improve sampling
quality

+

Latent features of multi-frequency sky partially coincide with known physical components
superimposed on the sky
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