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1 Introduction

The field of cosmology has witnessed revolutionary scientific progress over the past few

decades. Our picture of the Universe at the largest cosmic scales has been a rather

theoretical and speculative construct in the past. Recent high precision observations have

provided groundbreaking evidence for the modern theory of cosmology.

A major pillar for this theory is the observation of radiation from the origin of our

Universe called Cosmic Microwave Background (CMB), still detectable today. This ra-

diation was first predicted by Gamow (1946) based on the theory of the Big Bang, and

it was first observed in 1965 by A.A. Penzias and R.W. Wilson of the Bell telephone

laboratories (see Kolb & Turner (1988)). The Big Bang theory predicts the Universe

to originate from a very dense state. Currently it is believed that initially a mysterious

energy field called the inflation drove an exponential expansion. During this phase tiny

(10−5) anisotropies in the gravitational field were generated from quantum fluctuations

of the inflation. Those tiny anisotropies are observed today in the CMB to have almost

Gaussian and scale invariant statistics. The shape of the anisotropies was revealed by de-

tailed measurements of the CMB by the Cosmic Background Explorer (COBE) by Bennett

et al. (1996), the Planck satellite by the Planck Collaboration et al. (2015) and a number

of ground based telescopes. These fluctuations are the seeds for presently observed galax-

ies and the large-scale-structure (LSS) of the Universe. Detailed calculations show that

gravitational evolution of these seed fluctuations in an expanding background explain the

presently observed LSS. The expansion of the Universe, called Hubble expansion, has first

been discovered in the 1920s by Edwin Hubble who observed that more distant galaxies

appear to move away from us more rapidly than closer galaxies.

In addition, more detailed observations of galaxies and the LSS resulted in a disagree-

ment with the theoretical description of the Universe due to the discrepancies between

the mass of galaxies determined from their gravitational interaction, and their mass cal-

culated from their luminosity. A possible solution to resolve this disagreement provides

the introduction of an additional matter component in the Universe, called Dark Matter

(DM). This component is called “dark”, since it does not emit light and therefore can only

be detected according to its gravitational interaction with baryonic matter. The origin

and composition of DM is one of the most outstanding questions of our time.

Furthermore, observations of Supernovae reveal the Universe is currently expanding

accelerated. A possible theoretical description to account for this effect is the addition of

a cosmological constant Λ to the Einstein equation describing the expansion of space. The

other common approach is described by an additional energy component in the Universe

called Dark Energy (DE). A detailed identification of this DE component in terms of a

field or particle within a more fundamental theory is still missing.

The combination of the observational facts and Einstein’s theory of general rela-
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tivity yield the current model of cosmology: the so-called ΛCDM model of a Universe

presently dominated by a cosmological constant Λ (or DE) and DM. The model describes

a parametrization of the Big Bang model and is based on the Friedman Robertson Walker

(FRW) metric for space-time. The FRW metric is the solution to Einsteins’s field equa-

tions for a spatially homogeneous and isotropic universe. The model consists of three

different components.

The first component is the well known and observable baryonic matter from which all

stars and planets formed. This matter component is only a tiny fraction (∼ 5%) of the

total matter in our Universe. The second and larger (∼ 27%) component is DM. The

remaining matter content of the Universe (∼ 68%) is assigned to DE. The evolution of

the Universe as described by the ΛCDM model follows at least four different epochs of

expansion. The expansion measure of the Universe is often expressed in terms of redshift

z labeling different epochs of cosmic history.

The initial phase is dominated by an inflation field governing exponential expansion

of our Universe. After this phase the Universe is dominated by a “fluid” of radiation and

highly-relativistic matter. At this stage the Universe consists mainly of photons, neutri-

nos, electrons and other massive relativistic particles such as the DM particles. After some

expansion and cooling of the Universe, massive particles become non-relativistic, partly

annihilate, but their relics finally dominated over the radiation components (photons,

neutrinos) in mass from the equality epoch at zeq ∼ 3200 onwards. Due to the fact that

the main matter component produced effectively no pressure, a dust dominated model

for the energy component of the Universe can be assumed for zeq ∼ 3200 < z < 1
2
∼ zDE.

During this epoch of the Universe it is dominated by cold dark matter (CDM). From

zDE ∼ 1
2

up to the present epoch, the Universe seems to be accelerating again due to DE.

During these epochs all structures of the present Universe formed from quantum fluc-

tuations generated in the early Universe. Those fluctuations were linearly amplified to

macroscopic scales in an expanding background. Due to gravitational collapse and non-

linear structure formation processes these seed fluctuations formed todays structure of

the Universe. The non-linear regime of structure formation involves many different kinds

of physical processes such as thermo- and quantum-dynamics. This renders the field of

galaxy formation a very complex field, still far from being understood completely. In

order to gain further insights into galaxy formation, the connection between the LSS and

observable properties of galaxies appear to be of particular interest.

Therefore large redshift surveys such as the Sloan Digital Sky Survey (York et al.

(2000)) have been carried out recently. These surveys can be used to improve our under-

standing of the LSS. A recently proposed method to reconstruct the LSS from SDSS data

is the BORG algorithm presented by Jasche & Wandelt (2013). This algorithm results

in a reconstruction of the density field of the Universe in a particular region. Building

on those results, we present a method for correlation determination between the LSS and
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observed galactic quantities. Our analysis method is based on Bayesian inference and

is applied to suitably selected sub-samples of galaxy data which exhibit corrections of

galaxy and LSS properties in a clear fashion. These sub-samples are generated by an

automatic selection algorithm based on a specific kind of artificial neural network called

Self Organizing Map.

2 Correlation determination

In this thesis we seek to find a way to distinguish uncorrelated from correlated multivariate

data. This can be achieved by using the relative Shannon Entropy or Kullback Leibler

Divergence Barnum et al. (2010). The approach described in this section relies on the

joint probability distribution function (PDF) of the quantities of interest. In principle it

is possible to determine correlations between arbitrary numbers of quantities but for the

sake of this work we focused on the two dimensional case. A future generalization towards

the N-dimensional case is straightforward.

In order to determine correlation between two quantities x and y we use the fact that

their joint PDF P (x, y) carries additional information. To access this information we use

the product rule of probability theory:

P (x, y) = P (x)P (y|x) . (1)

Correlation means a dependency of y on x which results in a conditional PDF P (y|x) 6=
P (y). For statistical independence the conditional PDF is equal the the marginalized

PDF P (y|x) = P (y). Therefore,

P (x, y) = P (x)P (y) (2)

for statistical independence and

P (x, y) 6= P (x)P (y) (3)

for correlation. Since we have to deal with a finite set of data in real applications we

present discrete versions of the PDFs in the next section. In addition we describe a

common approach to compare the joint PDF P (x, y) and the factorized PDF P (x)P (y).

2.a Discretized estimate of joint probabilities

Given a finite set of data points (xi, yi) i ∈ (1, ..., N) it is possible to present an ap-

proximate version of the joint PDF P (x, y). This can be achieved by setting up a two

dimensional grid with fixed bin size and counting the numbers of data points per pixel.
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This yields:

Pij = P (xi ≤ x < xi + δx, yj ≤ y < yj + δy) ≈ Nij

N
, (4)

where Nij is the number of points in pixel (i, j). The estimate for the marginal distribution

P (x) is obtained by summing up all number counts of each pixel for fixed xi over all yi,

given as:

Pi = P (xi ≤ x < xi + δx) ≈ 1

N

N−1∑
j=0

Nij (5)

and

Pj = P (yj ≤ y < yj + δy) ≈ 1

N

N−1∑
i=0

Nij (6)

respectively.

In order to compare the discretized PDFs we present a discrete version of the relative

entropy in the next section.

2.b Relative Shannon entropy (Kullback Leibler Divergence)

The Shannon entropy for the probability distribution of a random variable X is defined

as:

H[P (X)] :=

∫
P (X) ln(P (X)) dX. (7)

Analogously the relative entropy between two distributions is defined as:

H[P (X)||Q(X)] :=

∫
P (X) ln

(
P (X)

Q(X)

)
dX, (8)

where Q(X) is a reference distribution and H[P (X)||Q(X)] describes the relative gain of

information by updating from Q(X) to P (X).

Plugging the joint PDF P (x, y) as P (X) with X = (x, y), and the product of the

marginalized PDFs P (x)P (y) as Q(X) into Eq. (8) leads to

H[P (x, y)||P (x)P (y)] =

∫ ∫
P (x, y) ln

(
P (x, y)

P (x)P (y)

)
dx dy . (9)

H[P (x, y)||P (x)P (y)] is larger than zero for correlated quantities. The gain of information

by updating from P (x)P (y) to P (x, y) leads to a positive divergence. For statistical

independence there is no gain of information since P (x, y) = P (x)P (y) (Eq. (2)) leads to

H[P (x, y)||P (x)P (y)] = H[P (x)P (y)||P (x)P (y)] =

∫ ∫
P (x, y) ln(1) dx dy = 0. (10)

As described above for a finite set of parameters xi and yi the joint PDF can be

estimated on a discrete lattice. In this case we obtain a discretized version of the relative
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entropy,

H[P (x, y)||P (x)P (y)] ≈
N−1∑
i=0

N−1∑
j=0

Pij ln

(
Pij
PiPj

)
≥ 0. (11)

A value H[P (x, y)||P (x)P (y)] ≈ 0 consequently signals statistical independence.

Theoretically, the approach described above is a simple estimator for correlation, since

it is easy to implement. Fig. 1 shows how the method performs on artificial data. The

results show that the relative entropy is higher for correlated structures. The entropy for

uncorrelated data is zero within numerical limits. The strength of this method relies on

its unparameterized estimate for correlation between x and y. Therefore it is applicable in

more generic cases than a parametrized model. Unfortunately this entropy-based method

is more sensitive to noise than parametrized models. As the noise increases, the entropy

decreases until it is approximately zero although there might still be correlations. The

only way to increase the empirical relative entropy in the presence of noise is to obtain

more data. However, this may be either expensive or not possible at all. Therefore we

propose a different way of correlation determination in the following, on the basis of a

parametrized model.

Figure 1: The discretized estimate for the relative entropy. Both figures are generated for
a fictional data set. In the right picture x and y are set up to be independent and normal
distributed. In the left picture correlation between x and y is set up as: y = 2x+ n, with
x being normal distributed. n is random normal distributed noise with a noise covariance
of σn = 1√

2
σx where σx is the covariance of x. In both cases we generated 1000000 data

points. The relative entropy was calculated according to Eq. (11).
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3 A simple parametric model

3.a Theoretical framework

In the previous chapter we discussed the possibility to detect correlations in datasets via

parameter-free methods. However, these methods suffer from noisy estimates of the joint

distribution which is approximated on a equidistant lattice of N grid nodes. The large

number of grid nodes is a particular problem if there is only a very limited amount of

measurements available. To counter this problem we propose a simple parametric model

to test for correlations. More specifically we assume the relation between x and y can be

written as:

y = f(x) + n (12)

where f is some arbitrary unknown function and n is assumed to be uncorrelated, normally

distributed noise. The underlying assumption of this relation is usually that x has a causal

impact on y. If it were the other way around, x and y should change roles. In this work,

we will often assign y to be the more noisy quantity irrespective of the causal structure.

The mild restriction on the generic form of the correlation already helps to regularize the

impact of noise significantly, as will be demonstrated.

If f is continuously differentiable then it can be expanded in a Taylor series up to Mth

order and equation (12) yields:

y ≈
M∑
i=0

fix
i + n . (13)

Determination of correlations therefore requires to determine optimal coefficients fi for

a given set of data points (xi, yi), i ∈ [1, ..., U ]. Eq. (13) should hold for every point of the

given data and therefore gives a relation for each data point. Combining these N relations

into a vector relation by defining vectors y := (y1, y2, ..., yU)T and f := (f0, f1, ..., fM)T

yields: 
y1

y2

...

yU

 = y = Rf + n =

x
0
1 x1

1 x2
1 ... xM1

... ... ... ... ...

x0
U x1

U x2
U ... xMU



f0

f1

...

fM

+


n1

n2

...

nU

 . (14)

Without further knowledge about the noise we assume n to obey Gaussian statistics with

zero mean and diagonal covariance. This indicates the noise of individual data points to

be uncorrelated. We further add the restriction that each ni has the same variance p. This

is reasonable if there are no locally varying uncertainties in the data space. Therefore the
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probability distribution for n is set up as:

P (n|N) = G(n,N) :=
1

|2πN| 12
e−

1
2
nTN−1n (15)

where Nij = p δij and |N| denotes the determinant of N which is simply |N| = pU . Since

it is required that p ≥ 0, it can be parametrized as p := eη, where the unknown constant

η ∈ R needs to be inferred from the data.

The resulting probability distribution for f given the data d and the noise parameter

η can be expressed in terms of the joint probability of all these quantities:

P (f |d, η) =
P (f ,d, η)

P (d, η)
=

P (f ,d, η)

P (d|η)P (η)
(16)

The Prior distribution for η is assumed to be flat because there is no information which

would make a choice of certain values for this quantity more plausible. Therefore (16)

leads to:

P (f |d, η) ∝ P (f ,d|η) (17)

up to a constant factor which depends on η and d, but not on f . The constant of

proportionality will be accounted for once we normalize the distribution.

The joint probability of f ,d and η can be obtained by marginalisation over n and use

of the data model given in Eq.(14):

P (f ,d, η) =

∫
P (f ,d, η,n) dn =∫

P (d|f , η,n) P (f) P (n|η) P (η) dn ∝
∫
δD(y − (Rf + n)) G(n,N) dn =

G(y −Rf ,N) =
1

|2πN| 12
e−

1
2

(y−Rf)TN−1(y−Rf) . (18)

We further assume the prior on f to be flat to permit f to model an arbitrary polynomial

of order M . Using completion of the square in the exponent, Eq. (18) can be written as:

P (f ,d, η) ∝ 1

|2πN| 12
e−

1
2

(yTN−1y−jTDj)e−
1
2

(f−Dj)TD−1(f−Dj) (19)

with D = (RTN−1R)−1 and j = RTN−1y. Note that the second exponential function

is a Gaussian distribution in f with mean Dj and covariance D. If η is known then the

proper probability distribution of f given d is obtained from (19) by normalization.

An estimate for η can be obtained via a maximum a posteriori (MAP) approach of

the marginal probability distribution for η given d. This distribution is obtained by
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marginalizing Eq. (19) with respect to f :

P (η|d) ∝ P (d, η) =∫
P (f ,d, η) df =

1

|2πN| 12
e−

1
2

(yTN−1y−jTDj)

∫
e−

1
2

(f−Dj)TD−1(f−Dj) df =

=
|2πD| 12
|2πN| 12

e−
1
2

(yTN−1y−jTDj) (20)

and the negative logarithm of this distribution is:

H(η|d) = − ln(P (η|d) =
1

2
(ln(|2πN|)− ln(|2πD|) + yTN−1y − jTDj + H̃0 =

=
1

2
((U − (M + 1))η + e−η(yTy − yTR(RTR)−1RTy)) +H0 (21)

where in the following we call H(η|d) a Hamiltonian. Here we used the definitions of D

and j and the fact that N is diagonal. Note that M + 1 is the dimensionality of the signal

space and U the dimensionality of the data space. H0 and H̃0 are terms independent of

η. The MAP solution for η is then given by setting the first derivative of H(η|d) to zero:

∂H(η|d)

∂η
=

1

2
((U − (M + 1))− e−η(yTy − yTR(RTR)−1RTy))

!
= 0 (22)

and therefore

pMAP = eηMAP =
yTy − yTR(RTR)−1RTy

U − (M + 1)
(23)

Given these results we obtain the conditional PDF for f as:

P (f |d, η) = G(f −Dj,D) =
1

|2πD| 12
e−

1
2

(f−Dj)TD−1(f−Dj), (24)

where we ignored factors independent on f since the distribution is now properly normal-

ized. Mean and covariance of this distribution are then given by:

fWF = 〈f〉(f |d,η) = Dj = (RTN−1R)−1RTN−1y = (RTR)−1RTy (25)

and

D =
〈
(f − 〈f〉)(f − 〈f〉)T

〉
(f |d,η)

= (RTN−1R)−1 =
1

pMAP

(RTR)−1. (26)

These equations resemble the solution of the famous Wiener filtering equation. Note that

the mean of f does not depend on pMAP since the noise is assumed to be zero centered and

the prior for f is flat. This method determines the full a posteriori probability distribution

for the coefficients f . For visualization the posterior of f (Eq. (24)) can be transformed

into data space resulting in a PDF for the realizations of the correlation function f(x).
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The mean 〈f(x)〉 is derived as:

f̄(x) = 〈f(x)〉 = R̃(x) 〈f〉 =
M∑
i=0

xi 〈fi〉 =
(

1 x x2 ... xM
)

〈f0〉
〈f1〉
...

〈fM〉

 (27)

with x ∈ R and R̃(x) : RM+1 → R. R̃ has the same structure as R but the finite

dimensional part of the operator, corresponding to the data points xi, has been replaced

by an infinite dimensional part for x ∈ R.

Analogously we obtain the covariance Y as:

Yxy =
〈
(f(x)− f̄(x))(f(y)− f̄(y))T

〉
=
〈

(R̃(x)f − R̃(x)fWF)(R̃(y)f − R̃(y)fWF)T
〉

= R̃(x)
〈
(f − fWF)(f − fWF)T

〉
R̃(y)T

= R̃(x)DR̃(y)T

=
1

pMAP

R̃(x)(RTR)−1R̃(y)T (28)

Combining these results yields a PDF for the possible realizations of the fitted curve

P (f(x)|d) = G(f(x)− R̃(x)fWF ,Y) , (29)

which describes how likely a realization is, given the data. This permits to visualize the

fitted curve including corresponding uncertainties in specific areas of the data space. For

an illustration see Fig. 2. Here we applied the method on fictional data and compared

the reconstruction to the original signal.

The Bayesian implementation of this method has the advantage that it is able to find

correlation in more noisy data, compared to the cross-entropy-based model free approach

described in the previous chapter. In addition the Wiener filter models a posterior PDF

for correlation structures and therefore infers uncertainties more precisely. On the other

hand, a successful application of this method needs additional information about the

data generation process. For optimal reconstructions the order M of the polynomial

describing the signal correlation needs to be known. In contrast, for real data application

the underlying model is often not known. Especially in fields where the physical processes

causing correlation are not yet understood completely, it is important to have a method

which does not need to know the data model in the beginning. Therefore possible ways

to infer generation processes from data are described in the next sections.
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Figure 2: The application of our method to an artificial data set. Blue points correspond
to the dataset on which the fit was performed. The data was defined by adding Gaussian
noise to a subsample of the original curve which is the black-dashed one in this picture.
The red line is the best fit using a data model with M = 2 for the given dataset. The
gray areas indicate one, two and three times the variance σ =

√
Y .

3.b Model selection

Given a specific data model with known deterministic structure between two quantities

x, y the parametric method described above is able to determine coefficients of the model

constrained by data. However, in practice such data models are often not available,

rendering estimations of correlations a challenging task. Especially for noisy data it is a

problem to decide which model to prefer.

As an example one could always choose the data model to be a high order polynomial.

In principle, fitting this model to data, exhibiting only linear correlation, should yield

vanishing coefficients for non-linear terms and appropriate inference of the correlation

would still be possible. However using this setup might encounter the following problems:

some part of the data has to be used to set the higher order coefficients to zero and

therefore less data remains to estimate the relevant coefficients. Therefore the estimated

parameters may be poorly conditioned. Another problem occurs for noisy data with a

correlation structure of low order in x. If the order of the reconstructed polynomial can

be arbitrary large the algorithm regards higher order polynomials to be more likely as

these can adopt to any feature in the data, even if this is only caused by noise. This effect
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is frequently referred to as “overfitting” and is described in further detail in Section 3.b.1.

To overcome these problems we require that the employed data model to resemble the

actual data generation process as close as possible. The optimal approach would be to

derive the data model. This requires complete knowledge of the physical theory which

explains the correlation function as well as knowledge of the data generation process. But

this approach is in contrast to the goal of this thesis to build generic uniform methods.

Since the methods we develop should aim at finding trends in data which was generated

from unknown processes, we will put forward an approach to estimate the data model

from the data directly in the next section.

3.b.1 A posterior model determination

In this section we describe an approach to determine the preferred model from data.

In a general framework there might be no prior information about the data model at

hand. Therefore we perform a posterior model selection. More precisely, we apply the

method described in section 3.a to data for polynomials of different order and compare

the likelihood of all models after the fit. To do so, we need to exclude the complication of

the data being generated from a superposition of two or more data generation processes

with different correlation structure. Therefore data that consists of several components

has to be filtered and sub-divided into different groups. Details on this approach will be

further discussed in Chapters 5.b and 6.

Even within such a single group we need to identify the preferred model. Instead of

comparing the full PDF of the likelihood we restrict the discussion to a comparison of

the maximum of the likelihood as a proxy. Specifically, we compare negative logarithm

of the maximum for reasons that become clear later. This denotes the minimum of the

Hamiltonian H(d|f , η) leading to

Hmin := H(d|fWF, ηMAP) = − ln(P (d|fWF, ηMAP)) . (30)

For the parametric model with unknown noise covariance (Chapter 3.a) Hmin becomes:

Hmin = − ln(P (d|fWF, ηMAP)) ∝ − ln(P (d, fWF, ηMAP))

= − ln(G(y −RfWF,N(ηMAP))) (31)

using the fact that the prior for f and η is assumed to be flat. Plugging in the definition

of the joint probability Eq. (18) leads to:

Hmin =
1

2

1

pMAP

(y −RfWF )T (y −RfWF ) +
1

2
U ln(pMAP) (32)

where U denotes the dimension of the data space.
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It is straightforward to see that the maximum likelihood shows the adequacy of chosen

models in light of the data: If the model explains the data well, the mean realization of the

model f(x) = RfWF is close to the y values of the data. Therefore the likelihood becomes

a narrow Gaussian and its maximum value is higher compared to a broader distribution of

a less adequate model. Therefore H(d|f , η) minimizes for the best fitting model. Figure

3 underlines how important the selection of the appropriate model is. A lower order

polynomial might not have the quality to reconstruct all structures of the signal. On

the other hand a high order polynomial adds additional structure to the reconstruction

although the fitted features might be noise. Fig. 5 shows the effect of “over-fitting” more

precisely.

To be robust against over-fitting, the selection process should be able to decide how

much structure can be extracted from the dataset. We propose a possible solution in the

next section.

Figure 3: Fits for different polynomials to a mock data set. The data was generated
according to y = f(x) + n (12) with n being Gaussian noise with a variance of σn = 0.6.
The function f(x) denotes the signal (black line) and was set up as f(x) := −0.2x3 +
0.3x2 + x + 0.1. The gray areas indicate the uncertainties for each fit. The numbers in
the legend correspond to the order of the reconstructed polynomial.
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3.b.2 Bayesian information criterion BIC

The Bayesian information criterion (BIC) is a possible solution of the over-fitting problem

(see Liddle (2007) for further information). The BIC value is associated with the likelihood

entropy by introducing a penalty for higher order polynomials. Specifically we assume:

BIC = 2Hmin + k ln(dim(d)) =

=
1

pMAP

(y −RfWF)T (y −RfWF) + U ln(pMAP) + (M + 2) ln(U) (33)

with k being the number of fitted parameters. Note that if the order of the polynomial

is M then k = M + 2 since there are M + 1 parameters for the polynomial and 1 for

the noise covariance. Fig. 5 shows how the correction to the entropy takes care of the

”overfitting” and Fig. 4 shows the BIC value compared to Hmin of different models for

the mock data used in Fig. 3.

3.c Summary and possible fields of application

In this chapter we discussed the properties of parametric models including model selection

processes. Combining steps from model determination to perform the best fit in this

model gives a tool which is able to find the best estimated polynomial for a given, noisy

dataset. If the data does not support higher orders the method will always prefer lower

order polynomials even though the actual correlation might be of higher order. This is a

perfectly valid information theoretical result. More detailed information on the correlation

requires to take more data. To demonstrate this effect we show in Fig 6 how the selected

order decreases with increasing noise. Other tests to see whether the method behaves as

expected in theory, are performed in the next section.

14



Figure 4: Hmin and the BIC value as a function of polynomial order. The same data as
in Fig. 3 is used. We see that the BIC has its minimum for a third order polynomial
which is exactly the order of the signal as seen in Fig. 3. In contrast, Hmin decreases with
increasing order.

Figure 5: Fits for selected data models fromHmin (left) and the minimal BIC value (right).
We restricted the order of the polynomial to be 15 at most, which is exactly the order
selected according to Hmin. Without restrictions, the model which connects every data
point has a minimal Hamiltonian. In contrast, the BIC is minimal for an order of zero.
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Figure 6: Histogram of recovered polynomial order for different inverse signal to noise
ratios k. N = 1000 and denotes the sample size. The noise variance σn ranges from ≈ 0
to ≤ 3. The signal was generated according to Eq. 13 as a fifteenth order polynomial. We
see that the most adequate order selected by the BIC decreases with increasing k. Note
that the selected model depends on the specific data realization, therefore we averaged
over reconstructed orders with similar k

3.d Method testing

In this section we demonstrate the performance of our method in different test cases. The

test data was generated in two different ways:

• Self consistent tests are tests with mock data that was generated in a way that

it respects the assumptions made in order to develop this algorithm. These tests should

show how the method behaves within its limits.

• Inconsistent tests are tests with datasets generated from a setup where the as-

sumptions of our method do not hold any more. These tests check whether the method

works also reliably on datasets with unknown properties.

3.d.1 Tests with consistent mock data sets

The first test was generated to visualize the general behaviour of our method. Therefore

we applied it to mock datasets of different quality. More precisely we generated data

sets of various sizes and different noise covariances from the same signal. The data was

generated consistent to the data model described in Eq. (13). The correlation coefficients

are set up according to Table 1.

Fig. 8 shows the reconstructions for all generated samples. The plots indicate how

the precision of the reconstructed signal decreases with increasing noise covariance and
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Table 1: correlation coefficients for the generated data in Fig. 8
f0 f1 f2 f3

0.0 −0.5 −1.0 0.3

increases with increasing sample size N . More precisely the overall variance of a parameter

fit behaves like: σf ≈ σn√
N

.

In addition the model selection process is involved. For low quality samples a lower

order polynomial was selected. This behaviour is in perfect consensus with our information

theoretical results described in Section 3.b.

In Figure 7 we show a fit for a mock data set with Gaussian distribution among the x

axis. Since we did not restrict the distribution of data among the x axis in our method

development, the reconstructions are still valid. In addition the uncertainties increase in

regions with less data points.

Figure 7: Reconstruction from mock data. The data was set up to be Gaussian distributed
among the x axis with a variance of σx = 1. The y values were generated consistent to
Eq. (12). More precisely, y = 2x+n where n denotes Gaussian noise. The noise variance
was set up to be σn = 2σx.
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Figure 8: The panels show the reconstructions for different mock datasets. The data was
generated to be consistent with the data model in Eq. (13). The correlation coefficients
we used are shown in Table 1.
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3.d.2 Tests with inconsistent mock data sets

As discussed above, the algorithm relies on the assumption that there exists a unique de-

terministic correlation between two quantities. Generally two ore more different processes

may be combined in a dataset, yielding a superposition of structures. To test the method

behaviour in cases where data has a superposition structure, we set up two different data

samples.

In the first setup we generated data that clusters in two different regions on the x axis

of a two dimensional data space. More precisely, we generate data which is distributed

according to two Gaussians among x. Each region has its own correlation structure

with the second dimension y. Each subsample of data is consistent with the data model

described in Eq. 12, but the combined dataset is not consistent any more. Fig. 9

shows how the method performs on this kind of data. The reconstruction acts on the

combined data and therefore is not able to reconstruct both correlation functions. It

rather reconstructs a curve similar to the correlation structure dominating the data in

this region of the data space. In the intermediate region between the two regions, the

reconstructed function does not follow any existing correlation, but rather interpolates

between them. This is the major problem that occurs with such a heterogeneous dataset.

The reconstruction might indicate a correlation trend which is not existent in any of the

signals.

Figure 9: Fit for data generated from an inconsistent model. Signal 1 and signal 2 are
both second order polynomials. The explicit coefficients of the correlation functions are
shown in Table 2. Subsets of data were drawn from each signal according to Eq. (13) and
the data presented to the algorithm is the combination of those subsets.
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Table 2: Coefficients for the correlation functions used in Fig 9
f0 f1 f2

Signal 1 −2 −0.5 0.3
Signal 2 2 1 −0.3

Another inconsistent setup with respect to our data model Eq. (12) is a combined

set of data clustering in a higher dimensional set of data. More precisely, we set up a

three dimensional data space with data points holding three different properties x,y,z. In

addition, we separate two different sub-samples of data along the z axis. One sample is

Gaussian distributed among z = 0, the other sample among z = 4. Each subsample has its

own correlation function between x and y, both consistent with Eq. (12). Combining these

sub-samples into one data sample results in inconsistent data for correlation determination

between x and y. Fig. 10 shows the performance of our reconstruction method on this

dataset. Since the information about the separation of the data is only available in z

direction, correlation determination fails for x and y for the combined data. As indicated

in the picture, distinguishing the sub-samples in the projection of the data to the x-y-

plane is not possible. Therefore the reconstruction does not support the properties of the

signals. In our explicit example of Fig. 10 the signals were set up in a way so that their

dependencies annihilate each other. Therefore the reconstruction indicates that there is

no correlation between x and y although there is correlation for each sub-sample.

Table 3: Coefficients for the correlation functions used in Fig 10
f0 f1 f2

Signal 1 0 0 2
Signal 2 0 0 −2

20



Figure 10: Fit for a dataset from an inconsistent model with a clustered separation
in z. The right picture shows the full data space with mock data from two different
models for correlation between x and y. Data drawn from different models are indicated
by different colors. In the right picture we show the projection of the data in the x-
y-plane. The correlation functions have the same color as the corresponding data on
the right. The correlation functions were generated according Eq. 13. Table 3 denotes
the correlation coefficients. The reconstruction method applied on the combined data
indicates no correlation between x and y.
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4 Connecting large-scale-structure properties with the

Galaxies of the SDSS DR7 main galaxy sample

The main goal of this thesis is to find correlations between properties of the large-scale-

structure (LSS) and properties of galaxies. The data for galactic properties is based on

the results of Sloan Digital Sky Survey (SDSS) and is described in further detail in the

following.

4.a Galactic data

The dataset used in this work is constructed from the sample DR7.2 of the New York

University Value Added Catalog (NYU-VAGC) Blanton et al. (2005). This catalog is

based on DR7 Abazajian et al. (2009), the seventh data release of the SDSS York et al.

(2000). The sample consists of 527 372 galaxies in total, in a redshift range of 0.001 <

z < 0.4. Each data point holds angular positions in ecliptic coordinates. Together with

the redshifts this gives the 3d positions for galaxies. Table 4 shows the ranges of the

catalog in the r-band Petrosian apparent magnitude r, the logarithm of the stellar mass

log(M∗) in units of the solar mass M∗ = M
MS/h2

and the absolute magnitude M0.1r. M0.1r

is corrected to its z = 0.1 value according to the K-correction code Blanton & Roweis

(2007) and the luminosity evolution model Blanton et al. (2003).

The full catalog contains a wide range of galaxies with different properties. Therefore

a sub-division of the data into several sub-samples can be helpful to distinguish different

correlation structures of the data. In fact the correct sub-sampling of the data set plays

an important role in the data analysis sections of this thesis. In sections 5.b and 6.d

we compare some of the galactic properties to the LSS and describe different methods of

sub-sampling. The reconstruction samples of the LSS used for correlation determination

are described in the next Section.

Table 4: Property ranges of the galactic data
z r M0.1r log(M∗)

min 0.001 10.1 −18.8 6.6
max 0.4 18.8 −23.0 11.6

4.b BORG reconstruction maps

The reconstructions for the density field are based on a non-linear, non-Gaussian full

Bayesian LSS analysis and is based on the same dataset as used for the correlation study

(see Jasche & Wandelt (2013)). The method used by Jasche & Wandelt (2013) is based

on a Markov Chain Monte Carlo sampling called BORG and results in a set of density
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contrast field samples δi. The density contrast δ is the normalized difference of the density

of the Universe ρ to its mean ρ̄. Specifically,

ρ = ρ̄(1 + δ) . (34)

The density contrast samples can be recombined to an approximate estimate for the PDF

of the density contrast. Specifically,

P (δ|d) ≈ 1

N

N∑
i=1

δD(δ − δi) . (35)

A correct treatment of uncertainties in the density field when applying the reconstruction

methods described in Section 3 can be found in the next Section.

4.b.1 Probability distribution for correlation functions with the LSS

As described in the previous section the BORG algorithm provides an ensemble of density

contrast field realizations that capture observational uncertainties. In order to treat the

uncertainties in the density contrast correctly, the reconstruction algorithm has to be

applied to each realization independently. This yields a PDF P (f |δid) for each δi. The

dependency of the realizations has to be marginalized out of the PDF’s in order to obtain

the final PDF for the correlation function P (f |d). This results in a Gaussian mixture for

the posterior PDF. Specifically,

P (f |d) =

∫
P (f , δ|d)dδ =

∫
P (f |δ,d)P (δ|d)dδ

≈ 1

N

N∑
i=1

δD(δ − δi)P (f |δi,d) =
1

N

N∑
i=1

G(f −mi,Di)

(36)

where δi denotes one of the N realizations of the density contrast and mi and Di denote

the corresponding mean and covariance for each fit.

4.b.2 Mapping the SDSS data onto reconstructed density fields

The density field inference was applied to the northern region of the sky as covered by

the SDSS survey. More precisely, the inference is performed on a cube with 750 Mpc
h

side

length with a grid resolution of ≈ 3 Mpc
h

in the co-moving frame. This results in a cubic

grid with 2653 voxels. Table 5 denotes the boundaries of this box.

In order to compare the properties of the LSS, we map the galaxies onto the cubic grid

and extract the information about the LSS for each galaxy. More precisely, we look for

the position of each galaxy and store the properties of the LSS in the voxel hosting the

galaxy. All galaxies within one voxel are assigned the same LSS information. This results
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Table 5: Boundaries of the cubic grid in the co-moving frame
Axis Boundaries (Mpc

h
)

x −700 50
y −375 375
z −50 700

in an extended data catalog, containing the intrinsic properties of the galaxies as well as

the properties of the LSS in the surrounding area of each galaxy. Note that this procedure

is perfectly applicable for all kinds of cosmological data as long as there is information

about the 3D position of the objects in the data.

In order to map the data catalog of the SDSS onto the grid, we need to transform co-

ordinates of galaxies from redshift space to co-moving frame. Redshifts zi are transformed

to co-moving distances dcom according to:

dcom =

∫ zi

0

1

cH(z)
dz, (37)

where c is the speed of light and H(z) denotes the Hubble parameter. H(z) is given as:

H(z) = H0

√
Ωm(1 + z)3 + Ωc(1 + z)2 + ΩΛ, (38)

under the assumption of a concordance ΛCDM model with the cosmological parameters

Ωm = 0.24, Ωc = 0.00, ΩΛ = 0.76, h = 0.73 and H0 = h 100 km
s MPc

( see Spergel et al.

(2007)). We used this set of parameters instead of more recent ones in order to match

the cosmology used for the LSS reconstructions.

As a final step we calculate the Cartesian coordinates for each galaxy:

x = dcom cos(δ) cos(α) (39)

y = dcom cos(δ) sin(α) (40)

z = dcom sin(δ), (41)

where α and δ are the right ascension and declination of the ecliptic frame, respectively.

In Figure 12 we show slices through samples of the density field as well as slices through

the mean density field. The mean density contrast 〈δ〉 was calculated according to:

〈δ〉 ≈ 1

N

N∑
i=1

δi . (42)

By looking at the plot it becomes clear that the uncertainties in the reconstructed maps

increase with increasing distance to us. Therefore the mean of the reconstructed samples

average out to an over-density of 〈δ〉 = 0 in areas where there is no structural information.
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In order to exclude areas of too high uncertainties in the further analysis of correlation

determination, we excluded all galaxies of the SDSS sample above a certain distance

dlim = 450 Mpc. This results in a sub-sample including only galaxies with redshifts

between 0.001 < z < 0.38. Figure 11 shows galaxies mapped on different slices of the

density field for the full sample and the limited sub-sample. The plot indicates that most

of the galaxies are located within this limit. This becomes clear by taking into account

that the LSS reconstruction is based on the same SDSS sample. Therefore uncertainties

in the density field decrease in areas where more galaxies are located.

The density field allows a derivation of many important quantities of the LSS. Some

important examples are: the gravitational potential, the tidal-shear tensor and the web

type classification. The rescaled gravitational potential Φ is given as

∆ Φ = δ (43)

and the tidal-shear tensor Tij is given by the Hessian of Φ:

Tij =
∂2Φ

∂xi∂xj
. (44)

4.b.3 Web type classification of the LSS

The web type is a classification of different structure types of the LSS. Various classifica-

tion methods have been presented in literature. In this thesis we split the LSS into four

different types: voids, sheets, filaments and clusters. The web type was classified accord-

ing to the eigenvalues of the tidal-shear tensor (for further information see Hahn et al.

(2007)). Table 6 shows the explicit classification rules and Fig. 13 shows the classification

of a reconstructed sample according to these rules.

Table 6: Web type classification according to the ordered eigenvalues of the tidal shear
tensor. In this thesis we used λth = 0

Classification
Void λth > λ1, λ2, λ3

Sheet λ1 > λth > λ2, λ3

Filament λ1, λ2 > λth > λ3

Cluster λ1, λ2, λ3 > λth

The structural classification as well as the density field reconstruction itself contain

information about the LSS of an area a galaxy is located at. These quantities are used

in order to compare galactic properties with the LSS. To do so, we apply the methods

developed in Section 3 to our extended data set in the following.
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Figure 11: Slices through the 3D reconstructed density field volume. Upper panels show
the results for one realization of the density contrast δi while lower panels depict the
ensemble mean density contrast 〈δ〉. In order to ensure the displayed quantity to be
positive we used log(2+δ) for the respective non-linear density contrasts since δ ∈ [−1,∞[.

26



Figure 12: Each yellow dot correspond to a galaxy which is mapped to slices of the 3D
reconstructed density field volume. Upper panels show the full SDSS sample mapped to
the density field while lower depict a sub-sample where we exclude all galaxies above dlim

as described in Section 4.b.2.
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Figure 13: Slices of the 3D LSS reconstruction. We distinguish the LSS according to the
web-type classification described by Table 6

5 Data analysis

In this section we describe the application of our method to the datasets provided by the

SDSS sky survey and the BORG reconstruction maps. Since the section 3.d only contains

tests with mock data sets it is important to make some more consistency checks with real

data in order to verify the functionality of the method provided.

5.a Comparison of our analysis to state of the art results

As a first consistency check we follow a similar philosophy as described by Lee & Li (2008).

Lee & Li looked for links between the LSS as characterized by the LSS map of Erdoǧdu

et al. (2004) and the galaxies of a previous SDSS survey (DR4 by Adelman-McCarthy

et al. (2006)). We first bin this data sample into several sub-samples for example using

the absolute magnitude as a discrimination and compare the mean of the density field for

each sample with the respective magnitude.

Since in this thesis we used the BORG reconstruction and the data release 7 of the

SDSS for cross correlation, the first consistency check is to apply the methods used by

Lee & Li (2008) to this new data set and to compare the results. To obtain an ensemble

mean density field, we average over the LSS reconstruction samples provided by the BORG

algorithm. Since the reconstructed field of Lee and Li is only available for nearby galaxies,
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a redshift threshold is taken at z < 0.04. In Fig. 14 the mean density field was averaged

over four different bins in the absolute magnitude and the stellar mass (Table 7 shows the

explicit bin range). In addition we applied our reconstruction method (Chapter 3) to the

data. The results show correlations between galaxy properties and the density field that

appear to follow the same trend as described by Lee & Li (2008). However, our recovered

amplitudes of the correlation trends are stronger. This is because the resolution of the

reconstructed density field of the BORG algorithm is higher compared to the density field

reconstruction maps used by Lee & Li (2008). Therefore the amplitudes of the density

contrast δ are increased there.

Despite this difference, the results of our method seem to be consistent with the results

published by Lee & Li (2008). Therefore we extend the data catalog up to the distance

limit of the BORG reconstructions in the following.

Table 7: chosen bins in absolute magnitude M0.1r and in the logarithm of the stellar mass
log(M∗)

Sample M0.1r log(M∗)
1 > −17.5 < 8.9
2 [−18.2,−17.5] [8.9, 9.4]
3 [−19.1,−18.2] [9.4, 19.0]
4 < −19.1 > 10.0

Figure 14: The dots correspond to the mean values of the logarithm of the density contrast
in each bin according to Table 7. The red line is the best linear fit to the given sample
and the gray areas indicate uncertainties.

5.b Sub-dividing the galaxy sample

In Section 3 we pointed out that for our method for correlation determination to work

properly it is important to use data generated from a single process of the form given by

Eq. (12) only. Therefore we propose to sub-divide the galaxy sample into sub-samples ac-
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cording to different separation rules. These rules should be chosen in a way to distinguish

different data generation processes as far as possible.

Important effects for large surveys are flux limitations of telescopes. This means that

at larger distances only the brightest galaxies are detected (see e.g. Mo et al., 2010).

For this reason flux limitations introduce a distance dependent bias on observed galaxies.

To remove this effect a volume limitation of the sample was applied, yielding a uniform

selection of galaxies within the chosen sub-volume. Volume limitation means to limit the

data set of a flux limited survey in a way to ensure that in this sub-sample all existing

galaxies are included in the sample. A possible way to accomplish this division is to

include only galaxies to the sample brighter than a certain absolute magnitude limit Mlim

and below a certain redshift limit zlim. Here zlim is the distance at which a galaxy with

absolute magnitude Mlim has an apparent magnitude equal to the limit of the survey mlim.

More precisely:

Mlim = mlim − 5 log

(
rlim

r0

)
(45)

with rlim being the luminosity distance corresponding to zlim and r0 = 10 pc conventionally

(see Mo et al. (2010)).

Fig. 15 shows correlations for different volume limitations of the sample. The correla-

tion functions indicate that separation into different volume limited samples also separates

different correlation structures. It is interesting to notice that the correlation function for

the full sample is always some high order polynomial which (as described in the method

testing section 3.d.2) might be due to the fact that the full data set is a superposition of

subsets generated by different processes with different correlation structures. Indeed this

fact is revealed by the correlation functions for the different volume limitations. As shown

in the picture, for sub-samples with lower magnitude the correlation function between the

absolute magnitude and the density field shows linear behaviour. The samples for higher

magnitudes still show complex correlation structures which indicates that in these regions

we may still see a superposition of effects. To observe separated correlation signals in

regions of higher magnitudes, further subdivisions of the sample seems to be required.

This could be achieved by sorting the data with respect to its web type classification

in the large-scale environment. This means to split each volume limited catalog into sub-

samples containing only the galaxies in voids, sheets, filaments and clusters respectively.

Since properties of galaxies in these regions differ, the processes causing correlations for

observed quantities may also differ in those regions. Fig. 16 shows the correlation func-

tions for the division according to these restrictions for a specific volume limitation at

M0.1r = −19.0 and Fig. 17 for a volume limitation at M0.1r = −20.5. Again this subdi-

vision tends to distinguish some of the different processes responsible for correlation, but

not all of them.
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Figure 15: Correlation functions for different galactic properties with the density contrast.
Note that each line correspond to a fit for a specific subset of data points corresponding
to the volume limitations shown in the last picture. The specific absolute magnitude
limit for each correlation function is shown in the legend. The last picture also shows
the density distribution of the galaxies in the magnitude redshift space. Redder areas
correspond to higher number counts of galaxies in this region and blue areas to lower
counts, respectively. Instead of the density contrast we used the logarithm of the density
contrast, since all compared galactic properties are on a logarithmic scale.
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Figure 16: The plots show the correlation functions for different subsamples of the galaxy
data now being separated after their web-type classification according to the LSS for one
specific volume limited sample. The limitation was applied at an absolute magnitude
threshold of M0.1r = −19.0.

Figure 17: Same plots as in Fig. 16 but for a different volume limitation at M0.1r = −20.5.
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The range of possible subdivisions of a data catalog may be arbitrary large rendering

manual treatment of the data impractical. Consequently a main goal of this thesis is to

develop a flexible and general method to compare different kinds of cosmological data

with the LSS properties. Therefore we seek to find an automatic approach to subdivide

a data set and perform correlation analyses.

Since manual selection always results in data which appear spatially separate in data

space, it is reasonable to set the selection process according to such different regions.

Specifically here we propose to use a specific kind of artificial neural network called “Self

Organizing Map” (SOM). SOMs are used to group sub-samples of data by similarity. One

realization of a SOM is described in the next section.

6 Self Organizing Maps

A Self Organizing Map (SOM) is an artificial neural network specifically designed to iden-

tify clusters in high dimensional data sets. More precisely it compares data space positions

and combines data with similar positions into a sub-sample of data. To accomplish this

division, the SOM has to adopt the properties of the spatial distribution of the data. This

chapter provides an overview on the SOMs as will be employed in the remainder of this

thesis. 1

6.a Method

A SOM is an artificial neural network which is able to determine the structure of a

dataset in an high dimensional space. The network has a specific topological structure.

For example each neuron of the network is linked to its neighbours in a square lattice

pattern with a neighbourhood function representing the strength of those links. The

network is trained by data with a training algorithm which gets repeated for every data

point multiple times resulting in a learning process.

Before the process can start the network has to be linked to data space. Therefore

each neuron holds a vector W = (W1,W2, ...,WN)T in the N dimensional data space,

called weights. It is important to point out that the neurons live in two different spaces:

the data space with the position represented by its weight and the network pattern where

each neuron is linked to each other by a neighbourhood function. The SOM used in this

work is initialized with a square lattice pattern.

Since in the beginning no information about the data space has been provided to the

network, weights are initialized randomly in data space. After initialization the actual

learning process starts. Each iteration of the learning process follows the same structure,

1The SOM analysis method used in this work is based on a SOM implementation provided by the
python package pymvpa (www.pymvpa.org/generated/mvpa2.mappers.som.SimpleSOMMapper.html).
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as described in the following.

First the “Best matching unit” (BMU) is calculated for a randomly chosen data vector

V = (V1, V2, ..., VN)T . The BMU is defined to be the closest neuron to V in terms of

similarity, as expressed by a data-space distance measure. The measurement in this thesis

is based on the Euclidean distance D with modified scales for each dimension. Specifically

D =

√√√√ N∑
i=1

(
Vi −Wi

σi

)2

, (46)

where σi being the scale factor for each component i. If the components of V are of

different shape (meaning that they have different measurement units) it is important to

normalize them. This ensures that all components have the same shape. σi is defined as:

σi := Vi max − Vi min (47)

where Vi max and Vi min are the maximum and minimum values of the ith component of all

data vectors. D is a measurement for the distance between two vectors in an Euclidean

space.

The weight of the neuron for which D gets minimal is modified according to the value

of V. Therefore the new weight for the BMU at iteration step t+ 1 is:

Wt+1 = Wt + Lt(V −Wt), (48)

where Wt is the previous weight and Lt is the “learning rate”. The learning rate is a

decreasing function of t and hence quantifies how strong an input vector should influence

the weights at a specific iteration step. It has to be a decreasing function since the tth

vector presented to the network should not change the weight of a neuron as much as the

previous ones to ensure converging information updates. There are two convenient shapes

for learning rates: a linear and an exponential decay. In this work we chose to use the

exponential decay with Lt given as:

Lt = L0e
− t
λ . (49)

L0 is the initial learning rate and λ is a tunable parameter to adopt the change of the

learning rate for each iteration.

Since neurons are linked to each other, adaptation of individual neurons will also affect

the weights of all other neurons. The strength of the modification of those weights should

decrease with distance to the BMU in the specified topology of the network. Therefore
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the size of the neighbourhood of a single neuron for a specific iteration step t is

σt = σ0e
− t
λ , (50)

where σ0 is the initial neighbourhood size. Note that the size decreases with t in order to

ensure that the modification of the vicinity of the BMU gets less important with increasing

t. The neighbourhood size σ defines the influence rate Θ of one iteration:

Θt = e
− d

2
BMU
2σ2t , (51)

where dBMU is the distance between the position of the updated neuron and the BMU of

the tth iteration step in the square lattice pattern. It is important to distinguish dBMU

from D, since dBMU is the distance between two neurons in the network pattern and D is

the euclidean distance in data space. Note that Θ assumes a value of one for the BMU

itself therefore modification functions can be combined, yielding

Wt+1 = Wt + LtΘt(V −Wt) . (52)

These steps are repeated for every single vector in the dataset. Note that for a single

process the order of the vectors presented to the network matters. The first vectors

influence positions of the neurons in data space stronger than vectors which are presented

to the network at later steps. To avoid biasing weights to the first subset of data, the

whole learning process has to be repeated multiple times. The final result is then given

by averaging the weights for each learning process.

This results in an iterative process including the following steps:

• Repeat multiple times:

– Initialization of the network patter

– Initialization of the weights for all neurons randomly

– Repeat for all N data vectors Vt, t ∈ (1, .., N):

∗ Calculate the BMU for Vt

∗ Update the weights of the neurons according to Vt

• Average the weights for each learning process

For large sets of data this learning process is numerically expensive. But once com-

pleted, the trained SOM is a numerically fast and powerful tool to represent the structure

of datasets. For a new vector V
′

it is now easy to classify this vector by simply compar-

ing it to the neurons. More precisely the neuron which holds the weight closest to V
′

(in

terms of the Euclidean distance) represents the region of the data space V
′

lies in.
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Therefore a SOM can be used to find clusters in a high dimensional data space. After

the SOM has been trained, each training vector is presented to the trained SOM and all

vectors closest to the weight of a specific neuron are stored in a sub sample of the data.

Each sub sample now holds a set of data vectors which are all similar to the weight of

their neuron. The average properties of this region are then represented by the data space

position given by the weight of the linked neuron.

6.b Test

Real data often come with the artifact that they appear to be a combination of clustered

regions in data space. Each region might have different correlation structures. In low

dimensional data sets this clustering is often easily detect visually, but this becomes

increasingly more challenging in high dimensions. The method described in section 3

requires data that was generated from a unique linear process. Therefore it is reasonable

to apply the SOM to data and treat identified sub-samples independently for correlation

analysis. Fig 18 shows the results after applying a SOM to the problem described in

Section 3.d.2 using the same data setup. The Figure indicates that the SOM is able to

determine different regions of the data space. In addition we applied the reconstruction

method described in Section 3 to each sub-sample of the data separated by the SOM. The

reconstructions show that for each sub-sample a successful inference of the original signal

is possible.

6.c Application

In Section 5.b sub-dividing of data samples (i.e. Galaxy properties) was performed man-

ually by using knowledge about the cosmological data which should be compared to the

large scale environment. This requires knowledge on the data generating process (for ex-

ample how the telescope works and which systematics it includes into the data) as well as

some knowledge about the physical properties of the analyzed objects (for example know-

ing which regions of the data are expected to have similar correlation structures). The

goal of this thesis is to develop a method which is able to find trends for the correlation

between the LSS of our Universe and the objects visible in the sky today, a field where not

all physical processes are understood yet. In addition a correct statistical formalization of

the data generation process in this context is a very complicated task and might not be

worth the effort when the goal is to find trends only. This is why the SOMs are a powerful

tool in this context since they are able to find simple and strong systematics of the data

generation as well as physical properties which cause different correlation structures and

are able to split the data in order to ensure that only one correlation structure remains

for each generated subsample. Of course the results generated by this method should

not be seen as being exactly the real physical correlation, but as a means to find new
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Figure 18: The SOM applied to the mock data described in Section 3.d.2. The right
figure shows the assignment of the data to different neurons after the learning process.
All points associated with a specific neuron are drawn in the color of this neuron. Note
that in this case a 2 × 2 grid for the neurons was set up but only 2 different clustered
regions exist. The SOM links two neurons to the clusters and the remaining neurons
to a few intermediate data points. The left plot shows the generated signals and the
reconstructions. The reconstruction method described in Section 3 was applied to each
sub-sample of the data according to the selection of the SOM.
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and unknown trends. These might help to understand the formation and the evolution

of galaxies better. This method might also help determining regions in the sky to find

objects with specific properties of the cosmological large-scale structure. As our SOM will

not only use the intrinsic properties of the galaxies but also properties of the cosmological

environment for classification.

6.d Data analysis

An important issue for the actual training of a SOM with a specific dataset is the best

possible selection of the data space to train it with. In order to find as many separated

regions in data as possible, it seems to be reasonable to include all available properties

of the galaxies and the LSS to the training space to include as much information as

possible. But using dimensions which are redundant to each other can lead to problems

during the training process. Since all elements of the data vector get treated the same,

this redundant information puts a higher weight onto their separation. Therefore the

optimal setup should include enough complementary data properties in order to gain all

the information necessary for data cluster determination, but should avoid redundant

information. Therefore for the SDSS catalog a reasonable setup is to include redshifts

z, r-band absolute magnitudes M0.1r and colors of galaxies. To include properties of the

LSS we extended the training space with the logarithm of the density field log(1 + δ)

and the three eigenvalues of the tidal shear tensor at the location of each galaxy. This

setup seems to be reasonable, since many properties of the LSS (for example the web type

classification and the ellipticity) depend on these quantities. The logarithm of the stellar

mass log(M∗), another common property of galaxies, was excluded from the training

process since it appears to be proportional to the absolute magnitude up to a constant

only. The usage of the logarithm of the density field instead of the density field arises

from the fact that the included galactic properties are on a logarithmic scale and therefore

the denpendencies should be estimated on this scale as well.

After the division of the full data sample of the SDSS digital sky survey into sub

samples according to the classification by the SOM we applied the method presented in

Section 3 to determine correlations in respective data samples. Fig. 19 and 20 show some

of the results for specific neurons. Note that the model selection process described in

Section 3.b is still involved in the analysis and therefore the shown correlation structure

was selected by the algorithm itself.

We see that for many sub-samples generated by the SOM, brighter galaxies seem

to be located in denser regions, while galaxies of lower brightness are located in less

dense regions. This results in a linear correlation between the density field and absolute

magnitudes. The trend remains in different sub-samples classified by the SOM, ranging

from blue galaxies in low density regions associated with filaments (Fig. 19) to red galaxies
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in high density regions associated with clusters (Fig. 20). The correlation strength seem

to decrease for high density regions. In extreme cases we found sub-samples indicating

an inverted trend in dense clusters (see Fig. 21).

Due to our interpretation of the results, we conclude that those inverted trends do

not constitute physical processes. We rather propose that this effect is caused by redshift

distortions in the data sample. These distortions arise from peculiar velocities δv of

galaxies, which introduce a Doppler shift to the redshift measurement (see Kaiser (1987)).

This effect causes galaxy clusters to appear stretched along the line of sight, an effect

frequently referred to as “Fingers of God”. Assuming virialized structures, the velocity

dispersion increases in high density regions according to

Φ ∝ δv2

c2
, (53)

where Φ denotes the gravitational potential. The velocity dispersion rises up to δv ∼
1000km

s
. Introducing a redshift uncertainty δz ≈ δv

c
leads to uncertainties in the co-

moving frame up to δdcom ≈ 14 Mpc. Since the resolution of the BORG reconstruction

maps is ∼ 3 Mpc, a galaxy can be mapped 4 voxels away from its actual position in an

extreme case. The density field reconstructions are corrected to the “Fingers of God”

effect due to the fact that the reconstruction process involves a non-linear reconstruction

of the density field from the initial conditions. Therefore a heavy galaxy near the center

of a cluster can be mapped to its actual vicinity. Since the properties of such galaxies

differ from others, the SOM groups those galaxies into a sub-sample according to their

similarity. This sample shows the inverted trend shown in Fig. 21 since heavier galaxies

get mapped further away from the cluster into low density regions.

Solutions to the redshift distortions problem are beyond the scope of this thesis, but

problematic regions can be identified according to the classification of the neuron which

holds the sub-sample of the data. In lower density regions the distortion is smaller than

the grid resolution and therefore the results remain reliable. A further discussion about

possible ways of including this effect into the analysis and future fields of application of

this method are provided in the next Section.
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Figure 19: Each plot shows the fit for the correlation function between one galactic
property (here the logarithm of the stellar mass log(M∗), the absolute magnitude M0.1r

and the (g-r) color) and the logarithm of the density field log(1 + δ). The reconstruction
method described in Section 3 is applied to a sub-sample of data which clusters according
to the SOM. The blue line is a histogram of the galaxy distribution according to the x
axis. All data points used for this fit are associated with one neuron after the training
process. The bottom right part shows the weight W of the BMU which is the mapped
data-space position of the neuron associated to the data cluster used for correlation.
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Figure 20: The plots have the same structure as in Fig. 19 but the fitting was applied to
sub-samples of data for different neurons. Note that for the lower pictures the neuron is
in a region associated with galaxy clusters (or DM halos) according to the eigenvalues of
the tidal shear tensor λi.
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Figure 21: The plots have the same structure as in Fig. 19 but the fitting was applied to
subsamples of data for different neurons. Note that this data cluster shows an inverted
correlation trend compared to the correlation structure of the data clusters in Fig. 19
and 20.
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7 Summary and outlook

7.a Summary

This thesis presents the development and application of a Bayesian inference approach

to search for correlations between different observed quantities in cosmological data sets.

Specifically we focus on identifying relations between the various properties of galaxies and

the cosmic large-scale-structure (LSS). This is of particular scientific interest, since the

properties of galaxy formation and evolution are assumed to be directly linked to the LSS

of our Universe. Studying the correlation between galaxies and their LSS environment

will hence give further insight into the process governing galaxy formation.

In order to determine correlation structures we implemented a parameter free method

based on a discretized version of the Shannon entropy in Chapter 2. In principal, this

method is able to determine correlations without specific knowledge about the correlation

structures and the data generation process, but suffers from noisy data. To counter this

problem we introduce a parametrized approach to test for correlation in data in Section

3.

This results in a method based on Bayesian inference including the assumption on cor-

relation structures to be parametrized as a polynomial with unknown order. The method

infers a posterior PDF of the coefficients describing the correlation polynomial via a

Wiener Filter approach. To automatically choose the order of polynomials as supported

by the data, we employ a model selection method based on the “Bayesian information

criterion” (BIC). The BIC compares the likelihood of different models matching the data.

Apart from our initial restrictions, this allows us to compare galaxy properties to prop-

erties of the LSS without prior information about correlation structures.

In this work we rely on galaxy data provided by the Sloan Digital Sky Survey (SDSS

DR7 Abazajian et al. (2009)). The data set includes various galactic properties such as

r-band absolute magnitude, stellar mass, color, redshifts and angular positions. Our de-

veloped method analyses the connection between these quantities and selected properties

of the LSS. LSS information, as used in this work, is provided by the BORG algorithm, a

fully Bayesian inference framework to analyze the 3D density fields in observations. The

method provides detailed 3D density fields including a detailed treatment of uncertain-

ties inherent to observations. This is achieved by providing a set of data constrained

realizations of the LSS via an efficient implementation of a Monte Carlo Markov Chain

algorithm (see Jasche & Wandelt (2013)).

The density fields obtained by the BORG algorithm in combination with our developed

methods provide a generic framework to relate cosmological objects to the properties of

the LSS. Inferred density fields permit to derive a variety of different properties including

eigenvalues and eigenvectors of the tidal shear tensor of the gravitational potential, web

type classifications and other properties. In order to study correlations, we match loca-
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tions of galaxies in the SDSS to the density field and assign LSS properties to respective

galaxies resulting in a combined galaxy-LSS dataset described in Section 4. In this work

the analysis is limited to the nearby northern sky, up to a redshift of z = 0.38.

The application of our method to the combined data in Section 5 verified that there

exists correlation. These correlations appear to be superpositions of different correlation

structures. We assume different correlation structures to belong to different data gen-

eration processes. Therefore we seek to find a way to distinguish sub-samples of data

belonging to different processes. Dividing the combined data into sub-samples according

to different properties of data attempts to disentangle these processes manually. Manual

organization of such datasets appears to be a challenging task. Therefore we propose to

use automatic approaches to adequately and accurately sub-divide data.

Specifically, in this work we relied on a specific kind of artificial neural network called

“Self Organizing Map” (SOM) in order to tackle the sub-division problem. A SOM seeks

to classify and distinguish data clusters. The strength of this method is its ability to

separate sub-samples of data in noisy and highly structured observations. We applied

the SOM to our combined galaxy-LSS data in Section 6. The application results in sub-

samples of galaxies which appear to hold unique properties of the data space indicating a

clustered structure of galaxy data in the chosen properties. These results provide a new

approach to a more natural classification of galaxies within their LSS environments in

comparison to manual sub-division.

In order to reveal correlation structures belonging to specific sub-samples, we applied

our correlation analysis method to individual data clusters in Section 6.c. The recon-

structed trends indicate varying correlation structures of different sub-samples. As an

example we found that the correlation between the density field and absolute magnitudes

appears to be stronger in filaments compared to clusters. In contrast, other sub-samples,

although separate in data space, appear to show similar correlations. The combined re-

sults ranging from the classification of galaxies according to galaxy and LSS properties to

the revealed correlation structures provide insight into galaxy formation in specific cosmic

environments.

The generic framework of our method allows a simple analysis for many different kinds

of datasets, including highly structured and noisy data. In addition, our methods for

classification and correlation determination are applicable in different but related fields.

In the following we give a brief overview over possible future extensions and applications.

7.b Outlook and possible fields of application

This work discusses a proof of concept for the proposed methods, enabling to us address

many different data analysis tasks. Our analysis indicates that the combined method

was successfully applied to specific galaxy and LSS properties. Therefore as a first step
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we propose to enlarge the data space by additional galaxy properties such as the star

formation rates, the 4000 Å break strength, and other common properties. Other LSS

properties available from the reconstructions, for example the ellipticity of the gravita-

tional potential, can be included as well. Obtained results may give further insights into

galaxy formation in relation to the LSS. The proposed method provides a general data

analysis pipeline that can readily be applied to coming and more detailed density fields

obtained by the BORG algorithm.

Another interesting project consists in applying the classification methods of the SOM

to a dataset containing the full spectra of galaxies in addition to their LSS properties.

Inferred galaxy properties, used in this work, are derived from observed spectra involving

assumptions on galaxy formation and evolution. Therefore classifying galaxies in their

LSS environment according to their spectrum with SOMs seems to be a natural next step

towards less model dependent analysis. Such a classification will result in spectral groups,

each associated to a sample of galaxies and could therefore be of major interest to the

field of studying galaxies in their LSS environment.

A particularly interesting aspect of the BORG reconstruction is the fact that it also

provides information on the cosmological initial conditions from which the present LSS

formed. Initial LSS properties could be included in the analysis to connect properties of

present day galaxies to the conditions in the early Universe and thereby connect primordial

physics with late time cosmology.
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C., An D., Anderson K. S. J., Anderson S. F., Annis J., Bahcall N. A., et al. 2009, ,

182, 543
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