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1 Introduction

1 Stochastic differential equations (SDEs) play an important role in a variety of scientific

fields [2] and industrial designs [3]. SDEs are a flexible tool to model dynamical processes

and traditionally serve as a useful prior for the inference of dynamical fields. In recent

decades the inverse problem for SDEs gained considerable attention as well. The goal of

this inverse problem is to infer the dynamical properties of the system from observations of

an evolving field. In order to tackle this problem a variety of methods have been proposed

in the past [4, 5]. These range from parametric methods which aim to parametrize the

process either in the temporal [6] or the frequency domain [7] to non-parametric and

Bayesian methods [8–10].

In a number of physical disciplines (e.g., astrophysics or plasma-physics) the dynamical

quantities of interest may evolve not only in time but are also extended in space. To

infer the underlying spatio-temporal dynamical process, a variety of methods have been

proposed. These include kernel-based methods [11], approaches using spatio-temporal

Kriging [12] as well as Bayesian non-parametric approaches for multi-dimensional spatial

evolution [13]. Some methods aim to tackle this problem assuming separability of the

spatial and the temporal evolution which helps to simplify the inference problem. In many

physical applications, however, separability cannot be assumed due to the entanglement

of structures in space and time.

For autonomous processes, the dynamics is fully determined in terms of the spectral

density of the dynamical field. In this work we will use this property to model linear, non-

separable, SDEs. Furthermore, the proposed method is able to reconstruct the spectral

density also for noisy and masked observations of the dynamical field using Bayesian

inference.

Physical fields usually can be defined in a corresponding configuration space and linear

differential equations can be described as linear operators acting on field vectors in this

space. We model the problem with the help of probabilities over the elements of this

configuration space directly to reflect the mentioned properties of the field. To this end,

we rely on the language of information field theory (IFT) [14,15] which extends informa-

tion theory to fields. The restriction of this work to spatially and temporal autonomous

differential operators enables us to describe those in terms of fields over the joint Fourier

spaces and to derive posterior distributions for the corresponding fields directly. Due

to the fact that the resulting equations are often not analytically traceable, the com-

putations ultimately are performed on a finite grid on a computer. However, as IFT is

independent of the chosen discretization, one can always choose a representation which

is convenient for the problem at hand. In this work, the discretization is achieved using

the software package NIFTy 3 (Numerical Information Field Theory) [16] which allows

1Major parts of sections 1 - 4 and 6 were already published in [1]
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building algorithms using a field theoretical language, while the framework takes care

of the underlying discretization. In order to introduce the notation and field theoretical

language used throughout this work, we continue with a brief introduction to IFT.

1.a Introduction to IFT and notation

IFT is a statistical field theory which allows doing probabilistic calculations for fields

(in the physical sense), defined over continuous space (or space-time). It is already used

in various inference tasks such as astrophysical imaging [17], component separation [18],

numerical simulations of dynamical systems [19] and others. IFT has also previously been

applied in the context of dynamical system inference [20]. The theory enables the user

to work directly in the field configuration space, which for many applications involving

fields is the natural space to define problems.

In order to define probabilities for fields we introduce a scalar product for fields (φ(x),

ψ(x) with x ∈ Ω ⊂ Rn) as

φ†ψ =

∫
Ω

φ∗(x)ψ(x) dx , (1)

where ∗ denotes complex conjugation. Note that throughout this work we restrict ourselves

to scalar fields, for simplicity, although a generalization to vector fields is possible. As an

example, a Gaussian distribution for a field can be written as

P(φ) = G(φ−m,Φ)

=
1√
|2πΦ|

exp

{
−1

2
(φ−m)†Φ−1(φ−m)

}
, (2)

where m denotes the mean and Φ is a linear, self-adjoint and strictly positive operator

which maps from the field configuration space to itself. In other words, it is the continuous

version of a covariance. Note that Φ is sometimes referred to as a covariance matrix,

although it is actually a continuous operator. |Φ| denotes the functional determinant of

the operator Φ. The exponential factor in Eq. 2 reads

φ†Φ−1φ = φ∗xΦ
−1
xy φy =

∫
dx

∫
dy φ∗(x) Φ−1(x, y) φ(y) , (3)

where we also introduced the continuous version of the Einstein sum convention.

Although it is natural to formulate many physical problems in a field theoretical

language, the data that we observe is always finite. Therefore, we need to translate

between the field configuration space (called signal space) and the so called data space.

To illustrate this procedure consider the following measurement scenario

du = Ru[φ] + nu , (4)
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where R denotes a projection operator which projects from the infinite dimensional con-

figuration space of φ to a finite set of M measurement points du (with u ∈ {1, ..,M}) and

n is the measurement noise. Using this data model and Bayes theorem, the posterior of

φ given d reads

P(φ|d) ∝
∫
Dn P(d|φ, n)P(φ)P(n) . (5)

If we assume n and φ to be independently Gaussian distributed with zero mean and

covariances N and Φ, respectively, and also assume R to be a linear operator the posterior

is also a Gaussian. I.e.

P(φ|d) = G(φ−m,D) , (6)

with mean

m = Dj = (Φ−1 +R†N−1R)−1R†N−1d , (7)

and covariance D = (Φ−1 + R†N−1R)−1. These equations resemble the famous Wiener

filter equations [21] which is the optimal linear filter, applied to a field theoretical setting.

In a non-linear setting, however, the exact form of the posterior or corresponding

expectation values are often not analytically traceable. Therefore, in this work we rely

on maximum a posteriori (MAP) estimates which we obtain by minimizing the so called

information Hamiltonian defined as

H(x) = − log (P(x)) , (8)

where log(x) is the natural logarithm. In addition, the second derivatives of the Hamil-

tonian give rise to the Laplace approximation of the uncertainty maps, as we will discuss

in section 3.e.

To motivate the application of IFT to the inference of dynamical systems we note that

linear differential equations can be rewritten as linear (differential) operators acting on

a field of interest. As we will point out in the next section, these operators serve as a

building block for the covariance function in the context of SDEs. Specifically, we draw

the connection to the spectral density of the field which is defined as the diagonal of the

covariance operator in harmonic space.

1.b Structure of this work

The rest of this work structures as follows: In section 2 we briefly outline how SDEs

are connected to the spectral density of a random process. Consequently, in section 3

we describe the key properties of our inference method of spectral densities from field

realizations as well as noisy measurements thereof. In section 4 we apply our method to

different mock data examples including one- and two-dimensional examples. In section 5

we use our method to reconstruct fluctuations in the electron density of the ionosphere
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using data from the LOw Frequency ARray (LOFAR [22]) radio interferometers and show

preliminary results. Finally, in section 6, we conclude the thesis with a short summary as

well as a small outlook to possible applications and further projects.

2 From a SDE to the spectral density

In this section we outline how the properties of a linear SDE are encoded in the spec-

tral density of a spatio-temporal dynamical process. Furthermore, we introduce the key

assumptions that are necessary to ensure that all relevant information is encoded in the

density.

A suitable starting point is a linear SDE of the form:

(Lφ)(x, t) = ξ(x, t) , (9)

where L is a linear (differential) operator acting on a field φ, and ξ is a random process.

x ∈ Rd and t ∈ R denote the spatial and temporal coordinates, respectively. Note that

the distinction between space and time is for convenience only, i.e. all formulas treat space

and time on the same footage which means that the analysis is also valid for a general

multi-dimensional process.

Assuming ξ to be Gaussian distributed with a covariance matrix Θ and using Eq. 9

yields the probability distribution for φ:

P(φ|L,Θ) =

∫
Dξ P(φ|L, ξ) G(ξ,Θ) = G(φ,Φ) , (10)

where

Φ = (L†Θ−1L)−1 . (11)

As we can see, all relevant information concerning the statistical properties as well as

the dynamic evolution is encoded in the correlation matrix Φ if the underlying process is

linear and invertible.

Assuming L to be local and homogeneous in both, space and time, implies that the

operator can be written as

Lxx′ = δ(d+1)(x− x′) g(∂t, ∂x) , (12)

where we introduced the space-time vector x = (t,x) and the differential operator encod-

ing function g. Fourier transforming Eq. 12 yields:

Lkk′ = (2π)d+1δ(d+1)(k − k′) f(k) , (13)

where k = (ω,k) denotes the coordinates in harmonic space and f(k) = g(i ω, i k) is a
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complex scalar field, with i being the imaginary unit. Note that if the differential equation

is real, then f ∗(ω,k) = f(−ω,−k) and therefore L is Hermitian.

Assuming further that also Θ is diagonal in harmonic space with the spectral density

Pξ(k), Eq. 11 can be rewritten as

Φkk′ = (2π)d+1δ(d+1)(k − k′) Pξ(k)

|f(k)|2

=: (2π)d+1δ(d+1)(k − k′)Pφ(k) , (14)

where we defined Pφ(k), the spectral density of φ.

As we can see, Pφ encodes the properties of a SDE up to the complex phase of f .

Therefore, we seek to find a way to infer it from observations of the field φ. In order to

derive the posterior distribution of the spectrum, in the following, we propose a way to

model the key features of Pφ.

3 Spectral density inference

In order to model Pφ we notice that if f and Pξ are continuous and smooth functions

of their arguments, then Pφ is a rational and positive function. We therefore model the

spectral density as

Pφ(k) = exp [τ(k) + tan (δ(k))] . (15)

The idea behind this definition is that we want to reduce Pφ to its two key properties:

either Pφ is a smooth, positive function of k, which we model by exp(τ), or it diverges as

|f(k)|2 → 0 , (16)

which is modeled by exp(tan(δ)). We therefore define suitable prior distributions for τ

and δ which aim to support these features.

3.a τ-Prior

In order to constrain τ to be a smooth function of its arguments, we impose a smoothness

prior on τ (see e.g., [23]). To get an idea about smoothness and the corresponding prior

consider the following 1D example: Suppose Pφ models a power-law, i.e.

Pφ(y) = yα , (17)

with y, α ∈ R and assume for the moment δ = 0. Then

τ = log (Pφ(y)) = α log (y) , (18)
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is linear in log(y) which implies that the second logarithmic derivative vanishes. We

therefore built our prior such that it minimizes the curvature of τ on a logarithmic scale.

This reads

P(τ) = G(τ, Tσ) , (19)

with Tσ such that

τ †T−1
σ τ =

1

σ2

∫
d (log (y))

∣∣∣∣ ∂2τ(y)

∂ log (y)2

∣∣∣∣2 , σ ∈ R , (20)

where σ is an overall hyper-parameter controlling the degree of smoothness one wants to

impose on τ .

In higher dimensions, this constraint has to be imposed for all quadratic, logarithmic

variations of the field simultaneously. A derivation of the exact form as well as a short

discussion can be found in appendix A. Furthermore, in some applications it is necessary

to impose smoothness also for negative y. To do so, we extend this prior using the complex

logarithm, which is also defined on a negative scale. Details of this approach as well as

the treatment of the special point y = 0, are discussed in appendix B.

3.b δ-Prior

The prior distribution for δ is constructed in a way such that δ allows for a transition

of the spectral density from smooth to divergent regions. We therefore also impose a

smoothness prior on δ which implies that for small δ, where

tan(δ) ≈ δ , (21)

the spectrum remains smooth. However, as δ approaches ±π/2, small changes in δ result

in large, abrupt changes of the spectrum.

The full prior reads

P(δ) ∝ G(δ, Tµ) G(δ, ν21) , δ ∈ [−b, b] , µ, ν ∈ R , (22)

where we also included a term to the prior that punishes larger values of δ. This ensures

that δ remains zero in regions where the data does not support a divergence. Note that

we restrict the support of δ to b = (π/2− ε), where ε serves as a “high-energy” cutoff in

order to avoid infinities during reconstruction. Since the length-scale of δ is π/2 we note

that ν ≈ π/2 is a reasonable choice.
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3.c Perfect data Posterior

Using the priors and the likelihood, defined in Eq. 10, we can immediately write down the

posterior distribution

P(τ, δ|φ) ∝ G(φ,Φ) P(τ) P(δ) (23)

and the corresponding information Hamiltonian

H(τ, δ|φ) = − log (P(τ, δ|φ))

=
1

2

[
φ†Φ−1φ+ log (|Φ|) + τ †T−1

σ τ + δ†
(
T−1
µ + ν−2

)
δ
]

+H0 , (24)

where H0 is a constant that is independent of τ and δ. Minimizing this Hamiltonian with

respect to τ and δ leads to their maximum a posteriori estimates, given perfect data on

the realization of φ.

3.d Noisy data Posterior

In reality, we are usually only able to retrieve noisy measurement data, d, of φ. We

therefore seek to find a way to infer the spectral density from noisy measurements rather

than from φ itself. Using the notation introduced in section 1.a and the data model (Eq.

4), the joint distribution reads

P(d, φ, τ, δ) = G(d−Rφ,N)G(φ,Φ)P(τ)P(δ) . (25)

Depending on the measurement process, in particular the form of R, the optimal way to

proceed may differ significantly. As this is a general issue concerning Bayesian inference

and well discussed in literature, we want to focus the discussion on our definition of the

spectral density rather than all possible ways of inference.

However, we note that there exist in principle two different approaches to reconstruc-

tion in this case. One way is to minimize the information Hamiltonian corresponding to

Eq. 25, with respect to all quantities of interest (φ, τ , δ), to obtain a maximum a posterior

solution. In cases of high quality data, this is a good way to proceed.

However, in cases of high measurement uncertainty, the high frequency modes of φ are

suppressed in the reconstruction as they are indistinguishable from the noise. Due to the

fact that the natural domain of (τ , δ) is the harmonic domain, the lack of high frequency

modes restricts a reliable reconstruction of τ and δ to low frequencies.

A possible way to resolve this issue is to marginalize out φ in Eq. 25. For a linear

R marginalization is obtained analytically and the marginal information Hamiltonian is
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given by

H(τ, δ|d) =
1

2

(
log

(
|Φ|
|D|

)
− j†Dj + τ †T−1

σ τ + δ†T−1
µ δ

)
+

1

2ν2
δ†δ +H0 , (26)

with

D =
(
R†N−1R + Φ−1

)−1
, j = R†N−1d , (27)

analogous to Eq. 7. Minimizing Eq. 26 leads to the posterior estimates which we will call

τ̄ and δ̄ in the following.

In the spirit of the empirical Bayes approach [24], where we treat these estimates as the

true values irrespective of their corresponding uncertainties, the approximate posterior of

φ reads

P(φ|d, τ̄ , δ̄) = G(φ− D̄j, D̄) , (28)

where D̄ denotes the information propagator D as given by Eq. 27, evaluated at τ̄ , δ̄.

3.e Hamiltonian gradients and curvature

In order to obtain maximum a posterior solutions as well as uncertainty estimates from

the information Hamiltonians presented in the previous sections, we need to evaluate the

corresponding gradients and curvatures.

For the perfect data Hamiltonian defined in Eq. 24 we find

∂H(τ, δ)

∂τk
=

1

2
(1− φ∗kφke−τk−tan(δk)) + (T−1

σ τ)k, (29)

and

∂H(τ, δ)

∂δk
=

1− φ∗kφke−τk−tan(δk)

2 cos(δk)2
+

[(
T−1
τ +

1

ν2

)
δ

]
k

. (30)

In order go get an estimate of the spectral uncertainty we have to consider the trans-

formed posterior distribution of τ and tan(δ) as they enter the logarithmic spectrum.

Specifically,

P(τ, tan(δ)|φ) = P(τ, δ|φ)

∣∣∣∣δ tan(δ)

δδ

∣∣∣∣−1

, (31)

where |•| denotes the functional determinant. The corresponding information Hamilto-

nian reads

H(τ, tan(δ)|φ) = H(τ, δ|φ)− Tr
(
log
(
cos(δ)2

))
. (32)

The second derivatives of this Hamiltonian can be used to get a Gaussian approximation

of the posterior from which we retrieve an uncertainty estimate for the log-spectrum. The
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derivatives read

∂2H(τ, tan(δ))

∂τk ∂τq
=

1

2
φ∗kφke

−τk−tan(δk)δkq + (T−1
σ )kq , (33)

and

∂2H(τ, tan(δ))

∂ tan(δk) ∂ tan(δq)
=

1

2
φ∗kφke

−τk−tan(δk)δkq + cos2(δk) cos2(δq)

(
T−1
τ +D−1

η +
1

ν2

)
kq

− 2

(
cos3(δ) sin(δ)

(
T−1
τ +

1

ν2

)
δ − 1

)
k

δkq . (34)

The square-root of the diagonal of the inverse operators (which we call
√
Ô) can then be

regarded as the one-sigma uncertainty estimate of the corresponding quantity. Further

details are described in [23]. For the noisy data posterior (Eq. 26) the derivations are

completely analogous.

Since now all ingredients that are necessary for inference are available, consistency

tests as well as mock data applications are presented in the next section.

4 Mock data application

For the first consistency check we restrict the analysis to one dimension, the time axis.

Consider a differential equation of the form

(α ∂2
t + β ∂t +m2) φ = ξ , (35)

with (α, β,m2) = (0.0003, 0.001, 0.5). This is the stochastic version of a damped harmonic

oscillator. If we assume ξ to be a white noise process with covariance Θ = 1, the spectral

density of φ becomes

Pφ(ω) =
1

(γ − α ω2)2 + (β ω)2
. (36)

A signal φ (displayed in figure 1 (b)) can then be generated by drawing one sample

from the probability distribution corresponding to Pφ. Assuming that one is given φ,

Eq. 24 can be used directly to infer the spectrum of the underlying stochastic process by

maximizing the corresponding Hamiltonian. In this application the hyper-prior values are

set to (σ, µ, ν) = (2.0, 2.0, 0.5π). The results of the reconstruction are shown in figure 2,

where we depict Pφ as well as the reconstruction on a log-log-scale. One can see that both

fields behave as expected, i.e. τ models the smooth background of the spectrum while

δ reconstructs the divergence and is zero everywhere else. In addition, one sees that the

assumption of linearity is true up to the divergent part, as expected.

Now we assume that instead of φ we are only given noisy and incomplete measurements

d of φ, as shown in figure 1. We generate mock data assuming Gaussian noise with variance
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Figure 1: Data d (a), signal φ (b) and reconstruction mφ (c) using the MAP estimate of
the spectrum. The darker (lighter) gray area denotes the one (two) sigma uncertainty of
the reconstruction.

σn = 16. To mimic a more realistic measurement scenario we built the response operator

R such that it only measures the signal for certain time intervals. This means that R

masks the signal in certain regions and the resulting data, displayed in figure 1 (a), is a

noisy and incomplete version of the original signal.

As described in section 3.d, we first reconstruct the spectrum by minimizing the

marginal Hamiltonian (Eq. 26) with respect to τ and δ to get maximum a posterior so-

lutions. Thereby we used the same values for the hyper-priors as in the perfect data

case. The results are displayed in figure 3. Using the results from Eq. 28 we also obtain

a reconstruction of the original signal φ as well as corresponding uncertainties (figure 1

(c)). We see that even in regions of no data, we partially infer the correct signal since we

were able to obtain a good reconstruction of the spectrum in the first place. The quality

of these inter- and extrapolations of the mean reconstruction strongly depends on the

correlation length of the corresponding dynamical process. This means that if the process

is dominated by random excitations rather than deterministic evolution, interpolation

11



Figure 2: Reconstruction of Pφ, given φ (figure 1, middle panel), on a natural log-log-
scale. The solid line is the theoretical spectrum corresponding to Eq. 36 and the black
dots display the spectrum of the actual sample φ. The dashed line is the maximum a
posterior estimate obtained by maximizing Eq. 24 and the dotted line is the MAP estimate
of τ alone. The gray area denotes the one sigma uncertainties of the reconstruction as
described in section 3.e.

Figure 3: Reconstruction of Pφ given noisy data d (figure 1, top panel). We note that due
to the Gaussian approximation the uncertainty estimates are significantly underestimated,
in regions of low power.
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over length scales much larger than the correlation length is in principle not possible.

However, due to the fact that we infer the full statistics of the process, even in these cases

we are able to state the probability of each possible interpolation in terms of the poste-

rior distribution. Due to the empirical Bayes approach spectral uncertainties are ignored

for the reconstruction of φ. Therefore, posterior uncertainties of φ are underestimated,

particularly concerning the overall power of the oscillations. This becomes obvious in the

regions of no data.

4.a Spatio-Temporal Evolution

In the next example we extend the analysis to two dimensions, a spatial and a temporal

one. The analysis follows the same spirit as described in the previous section. Using a

stochastic process of the form

(α∂2
t − β∂2

x − γ∂x − ρ∂t +m2)φ = ξ , (37)

we first generate mock data d (figure 4 (c)) from a signal φ (figure 4 (a)) using a noise

variance of σn = 7. ξ is again a white noise process and

(α, β, γ, ρ,m2) = (0.00007, 0.0002, 0.0014, 0.0012, 0.1) . (38)

The MAP estimate of the spectrum as well as the spectrum itself is displayed in figure 5.

In this case, the hyper-priors are set to

(σ, µ, ν) = (2.5, 2.5, 0.5π) . (39)

We see that in this setting we are able to recover the dominant features of the spectrum,

while features of lower power are not recoverable due to noise. This becomes even clearer

when we look at figure 7. Here we present slices through the spectrum for different

frequency values of k and ω. We see that all features with significant power above the

noise level are reconstructed well, while features which are indistinguishable of the noise

get suppressed in the reconstruction.

Using the MAP estimate for the spectrum we also reconstruct φ itself, as displayed

in figure 4 (b). We see that even in regions of no data, we reconstruct the dominant

oscillations of the system, while small scale structures cannot be recovered. Again, in

figure 6, we present slices of the data, the signal and the reconstruction for different

time-steps and at different locations. Subplot (c) shows the spatial structure at a very

late time-step, namely in a region where no measurement was made at all. This means

that the reconstruction is based entirely on the spectral reconstruction, which serves as

a prior, and the constraints which come from data at previous time-steps. Nevertheless,
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a reasonable estimate of the field configuration is still possible for a certain period after

the last measurements.

To demonstrate the advantage of this non-parametric approach we apply the analysis

to a highly structured setting, namely with a spectrum of the form

Pφ(k, ω) =
2

(m2 − sin (αk2 − βω2))2 + (γk + ρω)2
, (40)

with (m2, α, β, γ, ρ) = (1.1, 0.0025, 0.0011, 0.002, 0.004). Although this spectrum is com-

pletely artificial, we note that similar periodic and highly-structured spectra also exist in

reality. Such are observed, for example, in helioseismology [25]. We use the same setup

as described in the previous example but reduce the noise variance to σn = 1 in order to

capture more structure of the spectrum. In addition, the hyper-prior parameters were set

to (σ, µ, ν) = (4.0, 4.0, 0.5π). The results are shown in figure 8 and figure 9.

14



Figure 4: Signal φ ((a), drawn form the process corresponding to Eq. 37), resulting noisy

measurement data d (c), reconstruction mφ (b) and uncertainty map
√
D̂ (d) of the

reconstruction.

Figure 5: For the field and data shown in figure 4, natural logarithmic spectrum log(Pφ)
(a), projected data log

(
|d|2
)

(c), reconstruction τ + tan(δ) (b) and uncertainty estimate√
Ô (d) as defined in section 3.e.
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Figure 6: Slices through the full field, the data and the reconstruction, shown in figure 4.
The left panels show the spatial structure for t = −0.27 (a) and t = 0.38 (c). The right
panels show the temporal evolution at x = −0.15 (b) and at x = 0.17 (d). The gray areas
denote the corresponding one-sigma uncertainty estimate.

Figure 7: Slices through the natural logarithmic spectrum, the data and the reconstruc-
tion, shown in figure 5. The left panels show the spectrum as a function of k for fixed
ω = 0 (a) and ω = −30 (c). The right panels show the spectrum as a function of ω for
fixed k = −20 (b) and k = 70 (d). The gray areas denote the corresponding one-sigma
uncertainty estimate.
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Figure 8: Signal φ (a), noisy measurement data d (c), reconstruction mφ (b), and uncer-

tainty map
√
D̂ (d), for the highly structured spectrum given by Eq. 40

Figure 9: For the field and data shown in figure 8, natural logarithmic spectrum log(Pφ)
(a), projected data log

(
|d|2
)

(c), reconstruction τ + tan(δ) (b) and uncertainty estimate√
Ô (d).
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5 Preliminary application to the Ionosphere

Spectral density estimation can be used to reconstruct fluctuations of the electron density

in the ionosphere from radio observations. Ground based radio telescopes receive radio

signals coming from the sky, however, these signals get distorted by the ionosphere before

being received by the radio antennas. In general, both, the original astronomical signal

as well as the ionospheric distortions are unknown. However, if one restricts the analysis

to bright calibration sources, for which the flux-signal is known, one can use the resulting

distortions in order to reconstruct fluctuations in the ionospheric electron density. These

fluctuations are proportional to phase distortions of the received radio waves. We therefore

aim to reconstruct the field of phase distortions arising from ionospheric distortions. To do

so, we use calibration data of the LOw Frequency ARay (LOFAR [22]) stations. LOFAR

is a set of phased array radio antennas, capable of detecting radio signals in the 10 - 240

MHz frequency range. The field of view of the antennas cover a large part of the sky

above northern Europe, with a higher density in the Northern Netherlands (see figure

10).

Figure 10: Locations of the LOFAR stations distributed over Europe2

2https://www.weltderphysik.de/gebiet/universum/teleskope-und-satelliten/radioteleskop-lofar/
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5.a The Ionosphere

The ionosphere is defined as the ionized part of the Earth’s atmosphere and is formed

due to ionization of atoms and molecules by electromagnetic radiation and cosmic ray

particles (see e.g. [26]). The ionized part of the atmosphere ranges from 50 to more than

500 km above the surface of the earth. The ionospheric electron density varies from 107

up to 1012 particles per cubic meter. It is typically described in terms of several layers:

The innermost D-layer ranging from 50 to 90 km, the E-layer (90 - 150 km) and the

outermost F-layer (150 - more than 500 km above the surface of the Earth). Ionization

of the D- and E-layer is mostly caused by solar radiation, whereas the F-layer, the region

with the highest concentration of free electrons, is additionally ionized due to cosmic

radiation. Therefore the F-layer is often subdivided into two layers, the inner F1-layer

corresponding to solar ionization and the outer F2-layer corresponding to ionization due

to cosmic radiation [27]. Obviously we expect the properties of the ionosphere to differ

during night and daytime since the D-, E- and F1-layer are only present during daytime

whereas the F2-layer is present during day and nighttime.

The data used in this setup was measured around midnight and therefore the F2-layer

mostly contributes to the phase distortions of radio waves. The properties of the electron

density profile in this layer are caused by various different mechanisms ranging from solar

activity to the Earths global wind system.

Due to the coupling of electrons in the ionosphere to the Earths magnetic field, the

spatial distribution of the electron density becomes anisotropic. In addition, geomagnetic

storms, for example caused by a solar wind shocks, can cause non-linear effects for which

the ionospheric layers become unstable.

As the F2-layer is typically located within the Earth’s thermosphere, the total electron

density is also subject to atmospheric weather effects. Particularly winds in the thermo-

sphere caused by temperature differences introduce anisotropic spatial distributions.

As we can see, the total distribution of electrons in the ionosphere is subject to several

complicated and partially non-linear effects. However, particularly on smaller scales and

time periods much smaller than a day, many important properties of the electron density

can be captured within a linear, anisotropic model.

5.b Setup

In this preliminary approach we restrict ourselves to one frequency channel (ν = 120 MHz)

of the LOFAR core stations, which are a set of 48 stations located around Exloo in

the Northern Netherlands. These stations are located within several square kilometers.

Therefore we can approximate the relevant part of the surface of the Earth to be flat, which

results in a two dimensional plane within which the stations are located. As indicated in

figure 11 a), a station receives a signal from a calibration source located in the sky above,
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from which data about the phase distortions can be calculated. In order to reconstruct

distortions of the ionosphere, we have to project this data back to the ionosphere (see

figure 11 b)). For the moment we describe the ionosphere as a two dimensional plane

located at a fixed height above the surface of the Earth (100 km in this proof of concept

setup3). This clearly is a strong limitation, as the ionosphere is actually an extended

three dimensional object. We aim to alleviate this limitation in the future.

Figure 11: (a) Signal received from a LOFAR station for a calibration source. (b) Data
back-projected to the ionospheric plane.

The LOFAR stations are capable of tracking multiple calibration sources simultane-

ously (42 in total in this setup). Therefore, for each station we get 42 different station-

source pairs as well as corresponding data points (see figure 12). Ultimately, we use data

for various moments in time (see figure 13), which enables us to infer properties of the

dynamic evolution of the ionosphere from this dataset.

Figure 12: (a) Data received from a LOFAR station for several calibration sources, back-
projected to the ionospheric plane. (b) Projected data from all LOFAR core stations and
all sources for one moment in time.

3A more appropriate value from the International Reference Ionosphere (IRI [28]) model should be
used for scientific results
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Figure 13: (a),(b): Projected data for different moments in time. The sources move along
as the Earth rotates.

5.c Application

In the ionospheric plane we ultimately can define our field of interest: The 2+1 dimen-

sional field of fluctuations associated with ionospheric distortions. We aim to reconstruct

this field together with its spectral density, which also becomes a 2+1 dimensional field

defined in the corresponding harmonic space.

Due to the fact that the projection between the ionospheric plane (called signal space

in the future) and the LOFAR stations (called data space) is a linear operation, we can

make use of a linear data model, as defined in Eq. 4. We also assume that the projected

signal is subject to independent, additive Gaussian noise which models the uncertainty of

the measured phase distortions provided by LOFAR.

We apply our method of spectral density estimation to this setup which results in

reconstructions of the field of fluctuations, the corresponding spectrum, and uncertainty

estimates for both fields. The results are discussed in the next section.

5.d Results

In figures 14 - 16 we depict snapshots of the spatial pattern of the reconstructed field,

the projected data and corresponding uncertainties. As we can see, the algorithm reveals

wave patterns, which seem to propagate as time passes. This becomes obvious if we look

at the reconstruction of the spectral density displayed in figures 17 - 19, where we see

that there exist dominating modes that follow a dispersion relation between k and ω, the

coordinates of the harmonic partner domains of space and time, respectively.

In figure 20 we display the spatio-temporal evolution along one direction for the field of

fluctuations, which clearly shows that spatial and temporal evolution is not independent.

This becomes obvious if one considers the spectrum in the corresponding k-ω-plane, as

shown in figure 21.

Furthermore, we also notice an odd behaviour of the system, namely that there exist

structures which travel in the same manner as the data moves along the ionospheric
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Figure 14: Data (top), MAP estimate (middle) and one sigma uncertainty (bottom) in
the ionospheric plane for one moment in time. We see that the algorithm reconstructs a
spatial pattern and partially extrapolates this pattern even to regions with no data. In
addition the uncertainty is small in the patch where the data is located and is larger in
regions of no data, as expected.
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Figure 15: Data (top), MAP estimate (middle) and one sigma uncertainty (bottom) in
the ionospheric plane for a later moment in time compared to the previous figure.
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Figure 16: Data (top), MAP estimate (middle) and one sigma uncertainty (bottom) in
the ionospheric plane for a later moment in time compared to the previous figure.
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Figure 17: Projected data (top), spectral reconstruction (middle) and one sigma uncer-
tainty (bottom) in the harmonic partner domain of the signal space on a log-log-scale. We
depict the spectrum in the log harmonic coordinates k0, k1 corresponding to the spatial
coordinates, for a fixed ω, which is te coordinate in the harmonic partner domain of the
temporal domain.
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Figure 18: Projected data (top), spectral reconstruction (middle) and one sigma uncer-
tainty (bottom) in the harmonic partner domain of the signal space on a log-log-scale for
a larger ω compared to the precious figure.
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Figure 19: Projected data (top), spectral reconstruction (middle) and one sigma uncer-
tainty (bottom) in the harmonic partner domain of the signal space on a log-log-scale for
a larger ω compared to the precious figure.
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Figure 20: 1+1 dimensional spatio-temporal evolution of the data (top), the reconstruc-
tion (middle) and the corresponding one sigma uncertainty (bottom) for a fixed value
of x1, the other spatial coordinate. We see that the temporal evolution and the spatial
patterns are not independent. Furthermore we notice that there exist dominant waves in
the reconstruction which travel in the same way as the data moves along the ionospheric
plane due to the rotation of the Earth.
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Figure 21: Projected data (top), spectral reconstruction (middle) and one sigma uncer-
tainty (bottom) in the log(k0)-log(ω)-plane for a fixed k1. We notice that there is a strong
correlation between the spectral modes of space and time. These modes are ultimately
responsible for the dominant traveling waves seen in the previous figure.
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plane. As the movement of the data is due to the rotation of the Earth, these structures

correspond to traveling waves in the ionosphere with a velocity that matches the rotation

velocity of the Earth. These waves appear to be non-physical, as there is no physical

reason for an overpopulation of waves with this exact velocity. Consequently, we believe

that there exist systematic errors in the data, which imprint these structures. These errors

not only affect the reconstruction of the distortion field, but also the reconstruction of the

spectrum due to the fact that the corresponding waves show a characteristic spectrum

with a dispersion relation of the form

ω = v · k , (41)

where v corresponds to the rotation velocity of the Earth at the location of the ionospheric

plane. We aim to investigate these systematic effects in the following.

5.d.1 Implications of systematic effects

Lets assume that there is an overall positive offset in the calibration data for one station-

source pair, compared to the other station-source pairs. As time passes, this data point

moves along the ionospheric plane, together with the rest of the data. Due to the offset,

the fluctuation data is always larger for this point compared to the others. This structure

looks like a traveling wave front, and is interpreted as such by the algorithm due to the fact

that our data model does not have a notion of systematic errors. Particularly, all source

of uncertainty is assumed to be independent Gaussian noise which ultimately means that

all dependent structures have to be explained by the reconstruction of the signal.

To overcome this issue we therefore would have to introduce such systematic errors

in the data model, in order to properly deal with these effects. However, this requires

prior knowledge about the origin of such systematic errors. Further investigations of the

procedure how the distortion data is revealed from LOFAR measurements have to be

made in order to define such models.

Luckily there exists another way of how to proceed in this context. As we aim to

reconstruct a field of fluctuations, it is possible to pre-process the data by subtracting

a mean from the data, without changing the statistics of the fluctuations. We therefore

subtract the temporal mean from each time set of data points corresponding to one

station-source pair (see again figure 11 a for an illustration of such a pair). If the source

of systematic error is an offset in the data, which is constant in time as described above,

this procedure is able to remove this systematics.
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5.d.2 Subtracting the temporal mean

The processed data set d′ takes the form

d′tij = dtij −
1

T

T∫
0

dt′ij dt
′ , (42)

where (t, i, j) are the temporal, station and direction indices respectively and d is the

original data. Note that instead of producing a modified dataset d′, this subtraction

could also be introduced in a modified response operator, due to the fact that Eq. 42 is

a linear operator acting on the old dataset d. This could provide a first step towards

more sophisticated data models. However, in this preliminary application we used the

processed dataset d′ together with the old response operator instead of reformulating the

data model.

We also applied our reconstruction algorithm to this dataset. The results for the

reconstructed field of fluctuations are shown in figures 22 - 24 and the results for the

spectrum in figures 25 - 27.

5.d.3 Discussion

Comparing the results for the original dataset d with the results from the processed

data d′ indicates that the proposed procedure is a good step towards the problem of

dealing with these systematic effects. The spatial pattern of the reconstructed field of

fluctuations shows less structures that travel with the rotation speed of the Earth. This

preprocessing also partially removes the spectral parts associated with the dispersion

relation corresponding to these systematic effects (Eq. 41). This becomes obvious if we

compare figure 21 with figure 29, where we depict slices of the full spectra in the k-ω-plane.

Furthermore, if we consider the spatio-temporal evolution of the fluctuations for both

cases, we see that the reconstruction corresponding to d′ (figure 28) shows less structures

matching the evolution of the data as the Earth rotates compared to the reconstruction

from d (figure 20). This indicates that the reconstructions for d′ reveal structures which

are closer to physical ionospheric distortions. However, a more sophisticated treatment

of the systematic effects in terms of a reformulated data model is necessary in order to

fully remove these systematics which is beyond the scope of this work.
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Figure 22: Data (top), MAP estimate (middle) and one sigma uncertainty (bottom) in
the ionospheric plane for the processed dataset d′ (Eq. 42). We notice that compared to
the reconstruction using the original dataset d (see figures 14 - 16) there appear to be less
structures imprinted due to systematic effects.
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Figure 23: Data (top), MAP estimate (middle) and one sigma uncertainty (bottom) in
the ionospheric plane for a later moment in time compared to the previous figure.
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Figure 24: Data (top), MAP estimate (middle) and one sigma uncertainty (bottom) in
the ionospheric plane for a later moment in time compared to the previous figure.
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Figure 25: Projected data (top), spectral reconstruction (middle) and one sigma uncer-
tainty (bottom) in the harmonic partner domain of the signal space on a log-log-scale for
the processed dataset d′ (Eq. 42).
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Figure 26: Projected data (top), spectral reconstruction (middle) and one sigma uncer-
tainty (bottom) in the harmonic partner domain of the signal space on a log-log-scale for
a larger ω compared to the previous figure.
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Figure 27: Projected data (top), spectral reconstruction (middle) and one sigma uncer-
tainty (bottom) in the harmonic partner domain of the signal space on a log-log-scale for
a larger ω compared to the previous figure.
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Figure 28: 1+1 dimensional spatio-temporal evolution of the data (top), the reconstruc-
tion (middle) and the corresponding one sigma uncertainty (bottom) for a fixed value
of x1, the other spatial coordinate. We see that the temporal evolution and the spatial
patterns are not independent. However, there exist less structures that coincide with the
rotation of the Earth compared to figure 20.
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Figure 29: Projected data (top), spectral reconstruction (middle) and one sigma uncer-
tainty (bottom) in the log(k0)-log(ω)-plane for a fixed k1. Compared to figure 21, spectral
modes corresponding to space and time are a lot less correlated.
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5.e Towards more sophisticated ionospheric heights

As we have already mentioned above, a major limitation to the reliability of the recon-

structions is due to the simplified description of the ionosphere as a flat, two dimensional

plane. In particular, the fact that we have to set a fixed height for this plane influences

the reconstruction since the location of the projected data depends on this height. Due to

the fact that we consider multiple station-source pairs simultaneously it is difficult to see

in which way the reconstruction is affected by a change of the ionospheric height. There-

fore, a more sophisticated solution would be to reconstruct this height together with all

other fields of interest. However, this would again require to reformulate the data model

which is beyond the scope of this work. To demonstrate the differences in the reconstruc-

tion arising from different heights, we also applied our reconstruction algorithm to the

dataset d′ using a height of 200 km. This height is closer to the reference height provided

by the International Reference Ionosphere (IRI [28]) model, for the time period of the

observation of this dataset. The resulting distortion fields are shown in figures 30 - 32

and the corresponding spectra in figures 33 - 35. Furthermore in figure 36 we depict the

spatio-temporal evolution of the field and the corresponding spectrum in figure 37.

5.f Outlook

Aside from a reformulation of the data model in terms of a more realistic description of

the ionosphere, there exist additional improvements to the reconstruction algorithm to

overcome the preliminary nature of this application. One desired goal is to use the LOFAR

data from all 125 different frequency channels. This reduces the effect of systematic errors

due to the fact that there exists a known frequency dependence of the calibration phases

which is of the form

∆φR ∝ ∆ρe / νR , (43)

where ∆φR and νR are the phase distortions and the frequency of the radio signal, and

∆ρe are fluctuations in the electron density of the ionosphere. Making use of this relation

in a reformulated model, reduces systematic effects due to the fact that such systematics

are not expected follow this relation.

In addition, the LOFAR stations provide another factor of 10 more in temporal reso-

lution of the data, which, together with the data from all frequency channels, provides a

large improvement in terms of the quality of the data and reduces the overall impact of

measurement uncertainty.

The ultimate vision of this project is to fuse radio calibration with the ionospheric

reconstructions provided by this work. This can improve the measurement of cosmic radio

signals detected by LOFAR and could also be applied to upcoming radio interferometers

such as the Square Kilometer Array (SKA).
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Figure 30: Data (top), MAP estimate (middle) and one sigma uncertainty (bottom) in
the ionospheric plane, now located 200 km above the surface of the Earth. Again, the
reconstruction was performed on the processed dataset d′ (Eq. 42).
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Figure 31: Data (top), MAP estimate (middle) and one sigma uncertainty (bottom) in
the shifted ionospheric plane for a later moment in time compared to the previous figure.
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Figure 32: Data (top), MAP estimate (middle) and one sigma uncertainty (bottom) in
the shifted ionospheric plane for a later moment in time compared to the previous figure.
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Figure 33: Projected data (top), spectral reconstruction (middle) and one sigma uncer-
tainty (bottom) in the harmonic partner domain of the signal space on a log-log-scale for
the setup used in the previous figures where we shifted the ionospheric plane to be located
200km above the surface of the Earth and used the processed dataset d′.
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Figure 34: Projected data (top), spectral reconstruction (middle) and one sigma uncer-
tainty (bottom) in the harmonic partner domain of the signal space on a log-log-scale for
a larger value of ω compared to the previous figure.
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Figure 35: Projected data (top), spectral reconstruction (middle) and one sigma uncer-
tainty (bottom) in the harmonic partner domain of the signal space on a log-log-scale for
a larger value of ω compared to the previous figure.
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Figure 36: 1+1 dimensional spatio-temporal evolution of the data (top), the reconstruc-
tion (middle) and the corresponding one sigma uncertainty (bottom) for a fixed value
of x1, the other spatial coordinate. The ionospheric plane is located 200km above the
surface of the Earth.
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Figure 37: Projected data (top), spectral reconstruction (middle) and one sigma uncer-
tainty (bottom) in the log(k0)-log(ω)-plane for a fixed k1.
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6 Conclusion

Spectral density estimation is a powerful technique for field dynamics inference. In this

work, posterior distributions for the spectral density and the field itself have been derived

which ultimately are used to retrieve maximum a posteriori estimates as well as corre-

sponding uncertainties. The one- and two-dimensional tests indicate that the method

behaves as expected in self-consistent scenarios.

In addition, we demonstrated its applicability using calibration data of the LOFAR

radio interferometers in order to reconstruct fluctuations in the ionosphere. Our method

reconstructs these distortions in the ionospheric plane as a function of time, together

with the spectral density of the underlying process. Note that this first application uses

a simplified data model which renders all results to be preliminary. A more sophisticated

model has to be used as there appear to be remaining systematic effects in the data,

which currently still might dominate the reconstruction. However, a reformulation of this

model only affects the way of how the data is being processed and consequently does

not affect the applicability of the proposed method for multi-dimensional spectral density

estimation.

Further possible applications of this method involve fields which have a non-trivial

entanglement between spatial and temporal evolution. One example is the inference of

the dynamics of a plasma from observations. Another example is the area of numerical

simulations. In particular in astrophysical applications one is often interested in the dy-

namics of fields that also evolve on small scales, which are computationally too expensive

to simulate. Treating a few expensive simulations as observations of the field of interest,

our method can provide an approximate dynamics, an emulator that can mimic essential

properties of the real evolution of the field.

The distinction between smooth and divergent parts of the spectrum as well as the

corresponding properties of the prior choices for responsible fields τ and δ appears to be

reasonable in this setting. However, other choices may also be possible. A future goal

would be to study other parameterizations of the spectrum in terms of fields in particular

in a 4D high resolution setting where a reconstruction of the full spectrum may exceed

the range of computability.

Despite the fact that linear autonomous SDEs are an important class of SDEs to study

dynamical evolution, an extension to non-autonomous as well as to non-linear problems

is a desired goal for future work. However, for these cases it appears to be indispensable

to have a general method for linear processes first. This is provided by this work.
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A Smoothness Prior in higher dimensions

A smoothness prior in higher dimensions is sometimes constructed by imposing the con-

straint that, at each point y, the log-Laplacian ∂2/∂(log(y))2 of the field should be small.

This however, is not sufficient to impose smoothness in cases where one encounters con-

cave and convex curvature along different directions simultaneously (e.g., saddle surfaces).

In the following we briefly outline why this is the case.

If we consider the logarithmic Hessian of a field ψ at each point y ∈ RN , defined as

(H[ψ])ij(y) =
∂2ψ(y)

∂ log(yi) ∂ log(yj)
, i, j ∈ {1, ..., N} , (44)

we notice that the log-Laplacian is equal to the trace of the Hessian and therefore to the

sum of the corresponding eigenvalues. This indicates that if the eigenvalues are positive

and negative (corresponding to convex and concave curvature along the eigendirections),

the Laplacian can become zero even though the surface has nonzero curvature. As a

result, saddle-surfaces with equal absolute curvature and constant surfaces are equally

likely in the corresponding prior. This is not a desired behavior. The goal of a generic

smoothness-prior should be to assign lower probabilities also to surfaces with altering

curvature.

We therefore propose to use a prior which aims to minimize all quadratic, logarithmic

variations of a field ψ simultaneously. For a M-dimensional space the exponential factor

of the prior reads

ψ†T−1
σ ψ =

1

σ2
ψ†

M∑
i=1

(
T−1
ii + 2

i−1∑
j=1

T−1
ij

)
ψ , (45)

with Tij such that

ψ†T−1
ij ψ =

∫
dM (log (y)) |(H[ψ])ij(y)|2 . (46)

Note that this prior is rotationally invariant which indicates that curvature in all directions

is treated in the same way.

A.a Discrete derivatives

In order to apply the theoretic discussions above to a finite setting (e.g., a finite grid on

a computer) we need a discrete representation of the operators involved in the analysis,
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in particular of the log-derivative operator. One usual way is to approximate derivatives

in terms of finite differences (see e.g., [29]). A possible way of discretizing the second

logarithmic derivative is described in the appendix of [23].

However, in this particular setting there exist also another way of differentiation in

terms of Fourier transformation. We note that, using the chain rule, the second logarith-

mic derivative of y can be written as

∂2
log(y) = y2∂2

y + y∂y , (47)

where we restrict our discussion to one dimension, for simplicity. Furthermore, as dis-

cussed in section 2, differentiation can be translated to multiplication in harmonic space.

I.e.

∂yψ(y) =

∫
dk ik ψ̃(k) eiky , (48)

which indicates that using discrete Fourier transformations, derivatives can be represented

by point-wise multiplication in harmonic space.

At first sight, this may seem like a more complicated method for differentiation. How-

ever, we note that on a parallel machine, Fourier transformations as well as point-wise

multiplications can be fully parallelized while finite differences methods always involve

inter-node communication due to subtracting shifted versions of the field representation.

On a single node, however, finite differences appear to be computationally more efficient.

Therefore, depending on the problem setting, one method may be superior to the

other. Our tests indicate that both methods of differentiation are applicable for prior

construction in our problem setting. However, we do not recommend to mix both methods

within one inference problem, as the exact form of the derivatives might be incompatible.

A more sophisticated test in terms of computational time and accuracy is beyond the

scope of this work.

B Complex logarithm and smoothness at zero

In some applications of the spectral density inference method, we need to impose the

smoothness-prior on a zero-centered harmonic space, since the negative part of the density

can carry additional information and a shift to purely positive values is not always possible.

As the smoothness-prior involves logarithmic derivatives, we seek to find a way to

define logarithmic derivatives for negative values. This is achieved in terms of the complex

logarithm. Consider for example k > 0, then

log(−k) = log(eiπk) = log(k) + iπ , (49)
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and therefore the infinitesimal line-element reads

|d log(−k)| = |d log(k)| , ∀k 6= 0 . (50)

This indicates that we can express the derivative with respect to a negative k in terms of

the corresponding positive differential, i.e.∣∣∣∣ ∂ψ(k)

∂ log(k)

∣∣∣∣ =

∣∣∣∣ ∂ψ(k)

∂ log(|k|)

∣∣∣∣ , ∀k 6= 0 . (51)

As the logarithm of zero is not defined, the smoothness-prior is also not defined at zero.

In this work, we fix this problem by adding a prior to the analysis which aims to minimize

the second derivative w.r.t k. Therefore, the Hamiltonians of τ and δ get modified by a

term

Hη(ψ) =
1

2
ψ†D−1

η ψ =
1

2η2

∫ ∣∣∣∣∂2ψ(k)

∂k2

∣∣∣∣2 dk , ψ ∈ {τ, δ} . (52)

Note that for small k this prior dominates the smoothness prior, while for larger k the log-

arithmic derivatives are dominant and this second prior does not contribute significantly

any more. All applications shown in this work use η = 0.1.
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